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Floquet topological systems exhibit rich physics associated with quasienergy band structures and new
topological states; nevertheless, they are usually explored in Hermitian systems. Recent studies have shown
the capability of non-Hermiticity in engineering topological states, while the interplay of Floquet topological
phases and non-Hermiticity remains unclear. Here, we reveal that the non-Hermitian modulation can induce
the phase transitions between trivial and nontrivial topological Floquet states. Our study theoretically predicts
that the non-Hermitian modulation can create a Floquet π mode in an originally topological trivial system
according to the reopening of quasienergy band gap (i.e., the π gap), which is well confirmed experimentally
in the silicon waveguide platform. Our approach shows the powerful capability of non-Hermitian modulation in
engineering topological modes in Floquet photonics systems and would inspire different possibilities in optical
field manipulation in open systems.
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Topological photonics, with gapped bulk energy spectrum
and robust edge states within the band gap, have received
considerable research interest. There have been a lot of
works about topological protected photonic modes realized
in various systems. Topological zero mode, as a particu-
lar kind of topological mode with energy pinned at zero
in the simplest one-dimensional (1D) system, named the
Su-Schrieffer-Heeger (SSH) model, received much attention
due to its robustness against perturbations [1–8]. Recently,
topological photonic configurations have been extended from
static to periodically driven systems, known as Floquet topo-
logical photonics (FTP) [9–26]. The periodic driving enables
more flexible modulation on optical modes, which leads to
intriguing phenomena [15–28]. For example, the 1D Floquet
SSH model can host a different kind of edge mode called the
anomalous π mode, which differs from the zero mode in the
SSH model and shows an oscillation behavior on the edge of
lattice. This mode has been theoretically studied with Floquet
theory and experimentally realized in microwave optical sys-
tems [22–25,27–30].

On the other hand, non-Hermitian systems with parity-time
(PT) symmetry modulation have received great attention in
the photonics, in which gain and loss can be introduced to con-
trol optical modes and light propagations [31–40]. Recently,
the interplay of topology and non-Hermiticity has inspired
explorations. For example, the non-Hermitian parameters can
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provide a powerful tool to modulate the nontrivial topological
states, such as non-Hermitian topological phase [41–53], zero
mode recovering [54], light steering [55], and the topological
transport quantization [56]. Thus, it is of interest to investigate
the Floquet engineering with the presence of non-Hermitian
modulations.

Here, we theoretically and experimentally demonstrate
a non-Hermiticity-induced Floquet π mode in a periodi-
cally driven SSH model. The interplay of non-Hermitian
PT-symmetric gain/loss strength and the Floquet edge state
is systematically investigated. By varying the gain-loss profile
and Floquet modulation frequency, we construct a topological
phase diagram to illustrate the topological phase transition
and existence of topological states. It is found that the non-
Hermiticity can open a nontrivial topological gap (i.e., π

gap) in the quasienergy band and ensures the emergence of
the π mode. We carried out the experiments in a silicon
waveguides platform with controlled losses, which show good
agreement with theoretical results. Our study reveals that the
topological property of Floquet systems can be tuned by non-
Hermitian parameters and implies photonic applications in
non-Hermitian Floquet systems.

We start by considering a Floquet modulated PT-symmetric
SSH model where the hopping terms are modulated as light
propagates along the z direction in a waveguide array,

H =
N∑

n=1

β0a†
nan +

N∑
n=1

(−1)niγ a†
nan

+
N−1∑
n=1

[c0 + (−1)nδ(z)]a†
nan+1 + H.c., (1)

where β0 is the effective propagation constant for a single
waveguide and can be taken equal to a reference energy (zero
energy). The second term on the right is the PT-symmetric
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FIG. 1. (a) Schematic illustration of non-Hermitian periodically
curved waveguide array, where the red and blue colors indicate the
gain and loss respectively. The inset shows the scheme of the gap
D(z) between adjacent waveguides. (b) D(z) as function of z in a
full period under different waveguide profiles, where “Designed”
corresponds to our inverse designed waveguide profile to meet the
requirement of coupling strength c0 + δ(z) and “Cosine curved”
corresponds to widely used cosine function modulated waveguide.
(c) Quasienergy spectrum under OBCs with 60 waveguides as a
function of ω/c0. (d) Coupling strength of [c0 + δ(z)]/k0 of different
waveguide profile, where “Cosine coupling” corresponds to the exact
theoretical model with cosine function modulated coupling term. Our
designed waveguide profile can exactly realize the cosine function
modulated coupling as required by the Floquet model.

gain and loss with γ being the gain/loss strength, and the
third term represents the coupling between nearest-neighbor
waveguides where c0 is the constant coupling coefficient. δ(z)
is the Floquet modulated staggered coupling term and is de-
fined as

δ(z) = δ0 cos(ωz), (2)

where δ0 is the Floquet modulation strength and ω is the
modulation frequency. Since the coupling strength of adjacent
waveguides depends exponentially on the separation distance
between two waveguides (see Appendix B), the coupling
between cosine curved waveguides does not exactly satisfy
cosine function modulation on coupling coefficients. Here, the
waveguide profile is determined through an inverse design to
make the coupling strength exactly match the cosine modu-
lation. Figure 1(a) shows the waveguide scheme, which has
a gradually increased bending profile. The designed gap of
c0 + δ(z) of adjacent waveguides is plotted as the red curve in
Fig. 1(b), which clearly differs from the cosine (blue) curve.
Rightly due to this special bending profile of waveguides,
the deduced coupling strength can satisfy the cosine function
modulation, as shown in Fig. 1(d).

According to the Floquet theory, a quasienergy band struc-
ture governed by a time-periodic Hamiltonian with period
P = 2π/ω can be described in terms of so-called quasienergy

ε, analogs of the eigenenergies in a static system. The corre-
sponding Floquet states belong to the extended Hilbert space
R ⊗ T , which is a direct product of the usual Hilbert space R
and the space T of periodic functions ei (nωt ), where the index
n defines a subspace called Floquet replica [23,25,28,29].
Previous research has pointed out that the π mode exists in
a certain region of modulation frequency ω. The quasienergy
band structure under open boundary conditions (OBCs) with
60 waveguides as a function of ω/c0 is calculated with γ = 0,
c0 = 0.02k0, and δ0 = 0.015k0, where the k0 is the wave vec-
tor in free space and taken to 1 in theoretical calculations
[see Fig. 1(c)]. Blue bands correspond to n = 0 replica and
gray bands correspond to n = ±1 replicas. The π modes are
highlighted in red and it is clear that π modes only exist in the
frequency region of [4/3c0, 4c0]. According to the periodic
nature of quasienergy, we focus on the first Floquet Brillouin
zone (−ω/2, ω/2]. A gap at ε = ω/2 (thus called the π gap)
occurs due to Floquet replica coupling. The topology of the π

gap takes a transition whenever a new pair of replicas starts to
contribute at the given midgap energy, and the Zak phase of
such gap acquires a π shift [23]. The transition point depends
on the bandwidth � = 4c0 and Floquet modulation frequency
ω. The π gap with a nonzero Zak phase hosts the π mode at
ε = ω/2. At the high frequency region, the π gap is trivial
because no replica touches ε = ω/2. At ω = �, n = 0, and
n = 1 replicas start to contribute to the gap with an emergence
of the π mode. At ω = �/3, n = 2, and n = −1 replicas
touch ε = ω/2, which leads to the closing of the π gap and
a phase transition from topological nontrivial to trivial.

In non-Hermitian photonics, strong gain/loss strength
modulation can weaken the effective coupling among the
waveguides and optical modes, which can lead to mode lo-
calization and recovery of zero modes in static systems [51].
However, the reemergence of the π mode here has a totally
different mechanism. In the non-Hermitian SSH model, every
replica band is modulated by gain and loss and the bandwidth
becomes

� = 2
√

4c2
0 − γ 2. (3)

According to Eq. (3), changing gain/loss strength can mod-
ify the bandwidth �. As a result, the topological transition
of the π gap can be controlled by ω and γ . The modulation
of ω on the quasiband structures has been well illustrated in
Fig. 1(c) and also in former research [25]. Here, we mainly
focus on the modulation of γ . We first consider a Floquet
systems that is topologically trivial in the Hermitian case
[e.g., ω = 1.33c0 according to Fig. 1(c)]. Interestingly, when
adding the non-Hermiticity parameters, it can be tuned to a
topologically nontrivial systems with the emergence of the
π mode, as shown in Fig. 2(a), where the real part of the
quasienergy spectrum under OBCs with 60 waveguides as a
function of gain/loss strength γ is demonstrated (the imagi-
nary part is shown in Appendix D). It is evident that the π

modes can be recovered by certain amount of gain/loss (i.e.,
γ > γc = 0.142c0) as a result of trivial-to-nontrivial topolog-
ical transition. However, further increasing the non-Hermitian
strength will transfer the system to a topological trivial one,
thus making the π mode disappear. The topological property
of the π gap can be described by the topological invariant Gπ
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FIG. 2. (a) Real part of quasienergy spectrum under OBCs with
60 waveguides as a function of γ /c0. γc = 0.142c0 (marked by the
black dashed line) is the threshold of gain/loss strength of recovering
π mode. The π modes are highlighted in red. The bottom panel de-
picts the absolute value of numerically calculated Gπ . (b) Calculated
Gπ and phase diagram of π mode as a function of γ /c0 and ω/c0.
π mode exists in region II, and disappears in I and III. Orange lines
indicate the boundary of different topological phases and the black
dotted line indicates the trajectory of topological phase transition of
increasing γ , corrsponding to (a). Quasienergy band under PBCs for
a Hermitian γ = 0 (c) and non-Hermitian γ = 0.005k0 (d) systems,
respectively. k is the Bloch wave vector and a is the transverse period.
Inset depicts the band structure near the π gap for better visualiza-
tion. Here we set c0 = 0.02k0, δ0 = 0.015k0, and ω = 1.33c0.

[24,25], which applies to Floquet systems, and a nontrivial
π gap corresponding to nonzero Gπ . The bottom panel in
Fig. 2(a) depicts the absolute value of Gπ with increasing
γ , which clearly shows the topological transition induced by
gain/loss. To more clearly and elaborately reveal the effect, we
show in Fig. 2(b) a topological phase diagram based on Gπ

in the parametric space of ω and γ . Nontrivial π gap opens
in regions II where the π mode appears, while regions I and
III are in a topologically trivial phase without the π mode,
and the boundaries between different topological phases are
indicated by orange lines. The black dotted line indicates the
trajectory of topological phase transition with ω = 1.33c0 by
increasing γ , corresponding to the case analyzed in Fig. 2(a).
Though Gπ cannot describe the topological property pre-
cisely since induced gain/loss breaks the chiral symmetry
[i.e., σzH (z, k)σz �= −H (−z, k)], such as a noninteger value
of Gπ and the break of correspondence between Gπ and π

modes at the low-frequency and strong gain/loss region, it
can indicate the topological transition on the whole. The non-
Hermiticity-induced topological transition can be explained
by analyzing the replica bands. The replica band of Hermitian
(γ = 0) and non-Hermitian (γ = 0.005k0) waveguide lattice
was calculated at ω = 1.33c0 under periodic boundary condi-
tions (PBCs), as shown in Figs. 2(c) and 2(d). The zoom-in
band structure around ε = ω/2 is also shown in the insets.

FIG. 3. (a), (b) Quasienergies of 60 waveguides in the Hermi-
tian γ = 0 (a) and non-Hermitian γ = 0.005 (b) cases. Only ten
quasienergies around the first Floquet Brillouin zone edge are shown.
Inset shows the imaginary part of quasienergy. In the non-Hermitian
system, π gap opens and a pair of π modes appear, including one
lossy mode and one gain mode, corresponding to the blue and red
modes in the inset in (b), respectively. (c) Normalized intensity at
z = 0 of modes in the non-Hermitian cases [circled by red dotted
line in (b)]. (d) The dynamic evolution of recovered π modes for 60
waveguides.

For γ = 0, n = 0, and n = 1 replicas touch and there is no
π gap. However, when a certain amount of gain and loss
(γ = 0.005k0) are introduced, the n = 0 and n = 1 replicas
are separated thus the π gap opens at ε = ω/2 [see inset in
Fig. 2(d)].

Figures 3(a) and 3(b) show the quasienergy band struc-
tures of Hermitian (γ = 0) and non-Hermitian (γ = 0.005k0)
waveguide arrays under OBCs of N = 60, which are calcu-
lated by coupled mode theory (CMT) [54]. According to the
Floquet theory, each replica band consists of 60 modes. Here
only ten modes around ε = ω/2 are shown for better visual-
ization. It is evident that the Hermitian system only supports
bulk modes, corresponding to the topologically trivial phase
[Fig. 3(a)]. However, the π gap reopens when the system is
driven to the topological nontrivial phase by a certain amount
of gain and loss, and two discrete modes emerge inside the
π gap (i.e., the π modes) [Fig. 3(b)]. The inset shows the
imaginary part of quasienergy, indicating that one of the π

modes is the gain mode (red) while the other is lossy (blue).
The mode intensity profiles at z = 0 (the initial stage) of these
two topological states (circled by red dotted box) are shown
in Fig. 3(c). The topological gain mode mainly locates on the
first gain waveguide and the lossy mode locates on the last
lossy one. These two π modes propagate with periodically
oscillated fields across the first three waveguides around the
boundary, as shown in Fig. 3(d). It is clear that the optical
field mainly locates on the first waveguide at the beginning
and switches to the third one at the middle of one period
(see Appendix A for detailed Floquet theory analysis).

023211-3



WU, SONG, GAO, CHEN, ZHU, AND LI PHYSICAL REVIEW RESEARCH 3, 023211 (2021)

FIG. 4. (a) SEM image and enlarged regions of the non-
Hermitian sample. Left: Full view of the sample, consisting of
a grating coupler, a taper, and the waveguide array. Right top:
Input waveguide. Right bottom: Cr on the waveguide. (b) CMT
calculated optical field propagation in Hermitian (left) and non-
Hermitian (right) waveguide arrays and corresponding normalized
output intensities (bottom). (c) Experimental detected output inten-
sities of Hermitian (left) and non-Hermitian (right) sample. Top:
CCD recorded output signal. Bottom: Output intensities, which are
normalized to maximum. Scale bar = 10 μm.

To confirm the non-Hermiticity-induced Floquet π modes,
we then investigate the dynamics of light with single waveg-
uide excitation at the boundary for considering systems both
theoretically and experimentally. Figure 4(b) shows theoret-
ical (CMT) calculated optical field evolutions of different
systems for 60 waveguides and 200-μm propagations. Note
that the field intensity was normalized at every distance z
for better visualization. It is clearly observed that the field
penetrates into the bulk as it propagates within the waveguide
array for the Hermitian case, since the system is in the trivial
phase of the low frequency region. As a certain gain/loss
(γ = 0.005k0) is introduced to reach a nontrivial phase, the
localized π modes can be excited with the field confined along
the edge without spreading into the bulk. The extracted field
intensities from the output at z = 200 μm are shown at the
bottom of Fig. 4(b). The optical field is strongly localized
(around 90% energy locates on the first three waveguides) in
the non-Hermitian waveguides array according to the excita-
tion of the π mode, while for the Hermitian waveguide array
a majority of energy (∼60%) penetrates into the bulk.

Afterwards, experiments were carried out based on the
passive PT symmetric [51,54,57] configuration in a silicon
waveguide platform. The waveguide width (w) and height
(h) are optimized as w = 400 nm and h = 220 nm, in which
only one fundamental mode is supported at λ = 1550 nm
with propagation constant β0 = 2.1601k0. The waveguide
bending profile is carefully designed so that the coupling
coefficients satisfy c0 = 0.02k0, δ0 = 0.015k0 and ω = 1.33c0

(see Appendix B). The loss modulation is introduced by de-
positing lossy metal (i.e., chrome) stripes on top of every other
silicon waveguide, where the loss is engineered by the width
of the Cr strip (see Appendix C) [54]. Here, a 100-nm-wide
and 2-nm-thick chrome (Cr) layer is applied, corresponding to
the loss modulation 2γ = 0.01k0. The experimental samples
are fabricated by E-beam lithography and the inductively cou-
pled plasma (ICP) etching process (see Appendix C), which
include the waveguide array (60 waveguides with 200 μm
length, the same as the CMT calculations) and input grating
coupler that is connected to the edge waveguide [see the
scanning electron microscopy (SEM) images in Fig. 4(a)]. In
experiment, the light was input into the waveguide lattice by
focusing the laser (λ = 1550 nm) via an input grating coupler.
The transmitted signals were collected directly from the scat-
tered light from the output by a near-infrared charge-coupled
device (CCD) camera. The field intensity distribution at out-
put ends are captured by a CCD camera with the intensities
plotted out, as shown in Fig. 4(c). In the Hermitian waveguide
array diffraction into the bulk of the lattice occurs, while as the
loss is introduced (2γ = 0.01k0) the bulk diffraction is sup-
pressed and the topological π modes form. The experimental
results are in good agreement with the CMT calculations. It
is evident that this non-Hermitian system hosts the localized
π mode and this nontrivial Floquet state supports localized
energy transport.

So far, we have demonstrated the recovery of the π mode
by non-Hermitian modulation. It is due to the fact that the
coupling between different replicas can be drastically mod-
ulated by non-Hermitian gain/loss, which can reopen the π

gap for an initially nongapped topological trivial system. Note
that the non-Hermiticity can lead to mode degeneracy, which
has been utilized to achieve zero mode recovery in static
SSH models [54]. In contrast to that effect, we show here
that non-Hermiticity can compress replica bands in Floquet
systems and construct the π band gap, thus recovering the
topological π mode. Besides, we noticed that there are several
reported works investigating the Floquet non-Hermitian sys-
tem [44,58,59], and these works focus on the non-Hermitian
skin effect. We want to address that the skin effect, which
leads to mode localization on the boundary and breaks the
bulk-edge correspondence, is not relevant in our work, since
our system does not contain asymmetric coupling, which is
required by skin effect.

In conclusion, we have successfully demonstrated the
recovery of the Floquet π mode in a periodically driven non-
Hermitian SSH model by tuning the loss. The topological
phase diagram clearly shows the Floquet topological tran-
sition modulated by PT symmetric gain and loss, ensuring
the emergence of the topologically protected π mode. The
recovered π mode shows good localization on the edge and
supports robust transport. The experimental results in silicon
waveguides with controlled loss are consistent with the theo-
retical prediction. Our results show that the topological nature
of a Floquet system can be manipulated by non-Hermitian
engineering, which would inspire more insightful explorations
in topological and PT photonics.
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APPENDIX A: FLOQUET MODE

For the curved waveguide array, Floquet theory pro-
vides a framework for treating this time-periodic Hamiltonian
H (t + P) = H (t ) with a period P = 2π/ω. According to this
theory, the solution of the Schrödinger equation can be written
as a superposition of Floquet states:

|ψα (t )〉 = exp(−iεαt )|uα (t )〉, (A1)

where εα is the quasienergy and |uα (t )〉 is the associated
Floquet mode. The quasienergies are defined up to integer
multiplies of ω, and the Floquet modes are P-periodic func-
tions |uα (t + P)〉 = |uα (t )〉 and they belong to the extended
Hilbert space, a direct product of the usual Hilbert space and
the space of time-periodic functions with period P = 2π/ω.
By substituting the Floquet ansatz (A1) into the Schrödinger
equation, we can obtain an eigenvalue equation

(
H (t ) − i

∂

∂t

)
|uα (t )〉 = εα|uα (t )〉. (A2)

Using the spectral decomposition of the Hamiltonian and
the Floquet modes,

H (t ) =
∞∑

n=−∞
e−inωt Hn,

|uα (t )〉 =
∞∑

n=−∞
e−inωt

∣∣un
α

〉
, (A3)

we arrive at the time-independent Floquet equation:

(H0 − nω)
∣∣un

α

〉 + ∑
m �=0

Hm

∣∣un−m
α

〉 = εα

∣∣un
α

〉
, ∀n ∈ Z. (A4)

Then we apply the Floquet approach to our periodically
curved waveguide array system. The corresponding Hamil-
tonian can be written as a sum of time-independent and
time-periodic parts,

H (t ) = H0 + Hp(t ), (A5)

where

H0 =
N−1∑
n=1

[β0 − (−1)niγ ]c†
ncn +

N−1∑
n=1

c0c†
ncn+1 + H.c. (A6)

and

Hp(t ) =
N−1∑
n=1

(−1)nδ0 cos(ωt )c†
ncn+1 + H.c. (A7)

In further calculations, we express H0 and Hp as N×N
matrices

H0 =

⎛
⎜⎜⎝

iγ c0 0
c0 −iγ c0 · · ·
0 c0 iγ

...
. . .

⎞
⎟⎟⎠

N×N

(A8)

and

Hp(t ) = H1e−iωt + H−1eiωt . (A9)

Note that we set the propagation constant β0 to zero as a
reference value. The Fourier components H±1 are represented
by

H±1 = 1

2

⎛
⎜⎜⎝

0 −δ0 0
−δ0 0 δ0 · · ·

0 δ0 0
...

. . .

⎞
⎟⎟⎠

N×N

. (A10)

Then the time-independent Floquet equation (A4) can be
represented as the following eigenvalue problem with a block-
matrix operator:⎛

⎜⎜⎜⎜⎜⎝

. . .

H1 H0 + ω H−1

H1 H0 H−1

H1 H0 − ω H−1
. . .

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

...

u−1
α

u0
α

u1
α
...

⎞
⎟⎟⎟⎟⎟⎠

= εα

⎛
⎜⎜⎜⎜⎜⎝

...

u−1
α

u0
α

u1
α
...

⎞
⎟⎟⎟⎟⎟⎠

. (A11)

This equation reveals an interpretation of the Floquet ap-
proach: it transforms a 1D time-periodic problem to a 2D
time-independent problem where the Floquet replicas build up
a synthetic dimension [23,27,60,61].

By truncating Eq. (A11) at a sufficiently large n, we can get
the eigenvectors and eigenvalues that converge well. The cor-
responding eigenvectors contain the Fourier components of
the Floquet modes |un

α〉, where each of them is associated with
the energy εn

α = εn + nω. The solution of the Schrödinger
equation is given by

|�(t )〉 =
∑

α

Cα

∑
n

exp
(−iεn

αt
)∣∣un

α

〉
, (A12)

where the constants Cα = 〈uα (0)|�(0)〉 are determined by the
initial condition |�(0)〉.

We investigated the Floquet modes in the waveguide array
of N = 60. By truncating the replica at n = 3, we theoretically
calculated the propagation properties of Floquet modes, and
the evolution of the PT recovered π mode in one period is
shown in Fig. 3(d). The quasienergy of the two modes have a
nonzero imaginary part, and one is a gain mode and another
is a lossy mode, shown in Fig. 3(d) left and right, respec-
tively. These two modes show a good localization property
and mainly propagate along the boundary. Another important
property is that these two modes periodically oscillate among
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FIG. 5. (a) Coupling coefficient under different waveguide gaps
(edge to edge). The coupling strength does not depend on the gap lin-
early. Inset shows the inverse designed gap from the relation between
gap and coupling strength. (b) D(z) of adjacent waveguides for co-
sine coupling modulation. D1(z) and D2(z) correspond to c0 + δ(z)
and c0 − δ(z) respectively. (c) Scheme of designed waveguide array.
Only ten waveguides are plotted.

the three waveguides on the edge. It is clear that they mainly
locate on the first waveguide at the beginning and end of one
period and locate on the third one at the middle of one period.

APPENDIX B: WAVEGUIDE DESIGN

The waveguide modes in two adjacent waveguides couple
to each other due to filed overlap, and the coupling coefficient
depends on the field overlap integration. Figure 5(a) shows
the coupling coefficient of two guide modes at different gaps
between the two waveguides, indicating the coupling strength
depends exponentially on the separation between adjacent
waveguides. In order to realize the sinusoidal coupling mod-
ulation, the gap between adjacent waveguides is carefully
designed, as shown in the insets in Figs. 5(a) and 5(b). The gap
is inverse designed from the dependence of coupling strength
on the gap so that the designed waveguide profile matches
the exact sinusoidal coupling modulation. D1(z) and D2(z)
correspond to c0 + δ(z) and c0 − δ(z) respectively. Only one
Floquet period is plotted. Figure 5(c) shows the scheme of a
periodically curved waveguide array of 200 μm.

APPENDIX C: FABRICATION OF THE PHOTONICS
SILICON WAVEGUIDE ARRAY DEPOSITED

WITH CHROMIUM (Cr)

The experimental samples were fabricated using the
method of electron beam lithography (EBL) and the dry
etching process, which is followed by a second-step E-beam
lithography with the alignment and lift-off process to deposit
the Cr stripes. Figure 6 shows the fabrication flow and sample
schematics of each step, respectively. The substrate used here
is 460-μm alumina substrate with 220-nm silicon deposition.
The substrates were cleaned in an ultrasound bath in acetone,

FIG. 6. Fabrication flow of the photonic silicon waveguide array
deposited with Cr.

isopropyl alcohol (IPA), and DI water for 15 min respectively
and dried under clean nitrogen flow. The alignment marks
were then patterned by EBL (Elionix, ELS-F125), deposition
of chromium/gold (5 nm/40 nm) layers, and photoresist liftoff
(see Fig. 6). After that, the waveguide arrays and grating
nanostructures were exposed to EBL. The samples were then
used to dry etch the silicon layer in a 2:5 mixture of SF6
and C4F8 plasma and the residual photoresist was stripped off
by an oxygen plasma stripper. Next, the chromium structures
were fabricated by an alignment E-beam lithography and lift-
off process. The photoresist film was spin coated onto the
substrate. After exposing the structure, 2-nm chromium film
is deposited using thermal evaporation, then removing the
photoresist by soaking in N-methyl-2-pyrrolidone.

APPENDIX D: IMAGINARY PART
OF THE QUASIENERGY SPECTRUM

The quasienergy of Floquet modes in the non-Hermitian
case become complex due to the induced gain and loss.
The imaginary part of the spectrum is shown in Fig. 7, and
the highlighted red curves correspond to Floquet π modes.
The absolute values of the imaginary part of the quasienergy
of the π modes increase due to the increasing gain/loss
strength. Further increasing γ leads to better localization of
the π modes, and as a result, the absolute values of the imag-
inary part decrease [40].

APPENDIX E: TOPOLOGICAL ANALYSIS

The topological invariant Gπ of the considered Floquet
system is defined based on the time evolution operator. The

time evolution operator is U (z, z0) = T̂ e
∫ z

z0
H (z′ )dz′

, where T̂
is the time-ordering operator. Without loss of generality,
we can simplify U (z, z0) to U (z) by setting z0 = 0. The
time-averaged effective Hamiltonian is HF = (i/P) ln U (P).
According to Bloch theory, U (z) and HF can be decom-
posed as U (z) = �U (z, k) and HF = �kHF (k). The Z-valued
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FIG. 7. Imaginary part of quasienergy spectrum with increasing
gain/loss strength γ . The Floquet frequency is set to ω = 1.33c0.

invariant Gπ can be defined for a gap at π for a Floquet system
with chiral symmetry, which applies precisely to our system
in the Hermitian case [σzH (z, k)σz = −H (−z, k)],

Gπ = i

2π

∫ π

−π

tr[(V +
π )−1∂kV

+
π ]dk. (E1)

The V +
π is obtained from V (z, k) at half period, defined as

V (z, k) = U (z, k)eiHF (k)z, (E2)

V

(
P

2
, k

)
=

(
V +

π 0
0 V −

π

)
. (E3)

FIG. 8. Experimentally captured output signals with different
wavelengths. (a)–(h) Correspond to λ = 1480, 1490, 1500, 1510,
1520, 1570, 1580, and 1600 nm, respectively. Scale bar = 30 μm.

APPENDIX F: EXPERIMENTAL RESUILTS
OF BROADBAND CHARACTERIZATION

The recovered π mode lies in the Floquet π gap, thus it
is robust to a certain amount of perturbations on the cou-
pling coefficients. Since the coupling coefficients between
adjacent waveguides depend on the wavelength, the recov-
ered π mode should exist in a broadband spectrum [62].
To verify this, further experiments were performed on the
non-Hermitian Floquet waveguide lattice with respect to dif-
ferent wavelengths, and the results are shown in Fig. 8. We
changed the incident wavelength (from 1480 to 1600 nm),
and collected the scattered light at the output of waveguide
lattice by a CCD camera. It is clear that the localization of
output light on the first waveguide persists in the wavelength
range 1400–1600 nm, thus verifying the broadband property
of the recovered π mode. The decrease of output intensity
at longer wavelength is due to the coupling efficiency of the
grating coupler.
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