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We investigate quantum walks in a noninertial frame with a Rindler metric, emulated by a nonuniform optical
lattice with varying site couplings whose metric is mathematically equivalent to that of a Schwarzschild black
hole near the event horizon. The optical trapping of single photons and two indistinguishable photons in such
nonuniform lattices conforms to a well-known classical physical recognition due to the strong gravitational
force of black holes. Counterintuitively, there is an optical escape for path-entangled photons for which one
photon is captured, while the other photon escapes. Intriguingly, we find that the counterintuitive phenomenon
has a distinct escape mechanism compared to Hawking radiation, which is wholly due to quantum interference.
Additionally, we investigate the entanglement decay for this maximally entangled state in the emulated nonin-
ertial frame. Our study paves the way for a tabletop platform for understanding quantum effects under general
relativity.
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I. INTRODUCTION

Since the beginning of the detection of gravitational
wave [1,2] and the imaging of black holes [3], a broad in-
terest has been stimulated in the study of black holes, and
the Nobel Prize in physics has been awarded twice in the
last 5 y to the research of black holes. However, determin-
ing how to establish a unified theory combining quantum
mechanics and general relativity remains an open question.
Additionally, the quantum effects of black holes, such as
Hawking radiation [4] and Penrose super-radiance [5], have
not been validated by experimental observation in astron-
omy since there has been a lack of good observation tools
up to now. However, the quantum simulation [6–8], Feyn-
man’s innovative idea that one could employ a controllable
quantum system to mimic other quantum systems, could
dispose of these intractable problems with the quantum ef-
fects of black holes. One of the typical examples was the
Hawking-Unruh [9] effect, which has been successfully em-
ulated using a variety of quantum architectures ranging from
ultracold atoms [10], Bose-Einstein condensates [11], trapped
ions [12], and Fermi-degenerate liquids [13] to supercon-
ducting circuits [14] and nonlinear optical media [15–17].
In particular, with the flourishing of metamaterials [18,19]
and transformation optics [20–22], some other phenomena
for general relativity have been emulated, including the
gravitational lensing of black holes [23–27] and cosmic
strings [28,29], Einstein rings [30], wormholes [31–33], the
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“Big Bang” [34], and cosmological inflation [35]. Addition-
ally, optical lattices have been among the most versatile
platforms in manipulating photons. Optical lattices have also
allowed for the simulation of quantum physics in curved
space, such as fermion pair production [36,37] near the event
horizons of black holes and in a time-dependent space-time,
hyperbolic space [38,39] with constant negative curvature
connecting to anti–de Sitter/conformal field theory correspon-
dence. However, to the best of our knowledge, the direct
use of quantum entangled photons in optical lattices to sim-
ulate quantum effects for black holes has not been reported
yet.

Quantum walks (QWs) of correlated photons [40–44] in
optical lattices have been used to exhibit nonclassical corre-
lations as a result of uniquely quantum-mechanical behavior,
in contrast to single-photon QWs that could be described with
classical wave theory, and a large coherent superposition state
that has given rise to an advantage in massive parallelism
computing has been generated [45,46]. Additionally, QWs for
multiple indistinguishable photons have also been exploited
to simulate a variety of other quantum-dynamical processes
such as excitation transfer across spin chains [47] and energy
transport in photosynthetic complexes [48]. However, all these
works about QWs were limited for uniform lattices, leaving
the QWs of correlated photons in a nonuniform lattice rarely
investigated.

In this work, we first propose and exploit QWs in nonuni-
form optical lattices to study entangled photons in the emu-
lated noninertial frame with the Rindler metric, whose metric
is mathematically equivalent to that of the event horizon of
Schwarzschild black holes. Although an optical analog space-
time is not a faithful representation of an actual space-time
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[49], some certain aspects of gravitating systems can be well
preserved and emulated using such an analog space-time.
Inspired by transformation optics mapping curved space to
a nonuniform effective optical medium, we map the curved
space to nonuniform lattices with a continuously chang-
ing coupling coefficient. In addition, the two-dimensional
Rindler metric that describes an accelerated noninertial frame
is achievable by deliberately tuning the coupling coefficient
between identical waveguides with a linear relationship as a
function of the waveguide sites. We investigate the accelerated
walks of single photons for which the main lobes of the QWs
have the exponential evolution decided by the acceleration
of the frame. Interestingly, the waveguide decoupling from
other waveguides in the nonuniform optical lattice acts as the
event horizon site (n = 0). And the main lobe toward the event
horizon site is dominant with the evolution. Moreover, we
also explore the evolution of the photon-number correlation
of two indistinguishable photons, which clearly exhibits the
fact that the photons are bunched at the waveguide near the
event horizon. And, this photon bunching in the nonuniform
lattice is a good simulation of a photon being trapped by black
holes, which is a well-known classical physical process, due
to the strong gravitational force of a black hole. However,
if we input two photons in a type of path-entangled NOON
state, the photons have a probability of escaping from the
event horizons of black holes. This phenomenon is completely
contrary to the concept that photons are always captured by
black holes, as predicted by classical physics. Additionally,
we find that this type of photon escape has a totally distinct
mechanism compared to that of Hawking radiation, whose
mechanism is that particles with negative energy are captured
by black holes while positive energy escapes. The escape for
path-entangled photons is wholly due to the quantum inter-
ference. Moreover, the calculated entanglement entropy for
this maximal entanglement state begins decaying, and it is a
function of the acceleration of the noninertial frame, which
conforms to the expectation with the Unruh effect [50,51].

This paper is organized as follows. In Sec. II, we make
a brief view to map the 1+1-dimensional Rindler met-
ric into one-dimensional waveguide lattices and obtain the
Green function to depict quantum walks of photons in such
a nonuniform lattice. In Sec. III, we investigate quantum
walks of single photons and two indistinguishable pho-
tons. In Sec. IV, we investigate the quantum walks of
path-entangled NOON photons in the emulated noninertial
frame with a Rindler metric. Moreover, we also study the
entanglement of such NOON photons in the nonuniform
optical lattices. In Sec. V, we give a summary and some
discussions.

II. THE GREEN FUNCTION NEAR THE EVENT HORIZON

The goal of this section is to obtain the Green func-
tion in the nonuniform optical lattices which emulate the
noninertial frame with a Rindler metric. First, we map the
1+1-dimensional Rindler metric [50] into one-dimensional
waveguide lattices, whose metric is as

ds2 = −(αx)2dt2 + dx2, (1)

FIG. 1. Quantum walks of single photons in uniform and nonuni-
form optical lattices corresponding to the flat space and a noninertial
frame with the Rindler metric. (a) Schematic of nonuniform lattices
with coupling coefficient linearly depending on waveguide sites as
κn,n+1 = αnκ0/2. Here, α is the acceleration. (b) Quantum walks of
single photons in uniform lattices. The inset is the output pattern for
the white dashed line in the evolution picture. The site where single
photons are injected is n = 50. (c) Quantum walks of single photons
in nonuniform lattices, which emulate a noninertial frame with the
Rindler metric. The inset is the output pattern for the white dashed
line in the evolution picture. The site where single photons are
injected is n = 45. Here, λc = π/(2κ0), where κ0 is the coupling
coefficient.

where α is the acceleration. Intriguingly, the Rindler metric
is mathematically equivalent to the metric of Schwarzschild
black hole near the event horizon after only considering the
radial direction under the restriction αx � 1 (see details in
Appendix A). In this work, the analog of the event horizon of
black holes is constructed inspired by transformation optics
that is not a perfect simulator. Given that transformation optics
preserved the coordinate description of light whereas at the
expense of some other feature of the emulated gravitational
system, we exploit the invariance between the emulated and
actual space-time as a tool to study some fascinating gravita-
tional phenomena due to lacking astronomical observational
methods. And, the gravitational field is encoded into lattices
of identical evanescently coupled waveguides, in which the
propagation of photons is determined by two parameters:
the propagation constant and the coupling constant between
waveguides. According to the mapping relationship inspired
by transformation optics, a lattice of an identical waveguide,
in which the coupling constants have a linear relationship as
a function of the waveguide site n [as shown in Fig. 1(a)], the
photons propagating within can describe photons evolving in
an accelerated noninertial frame (see details in Appendix A).
To study the propagation of photons in these types of struc-
tures, we quantize the fields in the lattice. Since each of the
waveguides supports a single mode, the field in waveguide
n is represented by the bosonic creation and annihilation
operators a†

n and an, which satisfies the commutation rela-
tionships [ama†

n] = δm,n. The operators evolve according to the
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Heisenberg equations:

−i
∂a†

n

∂z
= β0a†

n + α(n − 1)κ0

2
a†

n−1 + αnκ0

2
a†

n+1. (2)

Here, z is the spatial coordinate along the propagation
axis, which plays the role of the time t for the waveg-
uide evolution, and β0 (κ0) is the propagation (coupling)
constant. The evolution of the creation and annihilation op-
erators is calculated using the Green function Um,n(z) of
the above equation, a†

m(z) = ∑
n Um,n(z)a†

n(z = 0). The uni-
tary transformation Um,n(z) describes the amplitude for the
transition of a single photon from waveguide n to waveg-
uide m. The Green function is given by (see details in
Appendix B):

Um,n(z) = 1

2π

∫ π

−π

dq exp
{

imq − i2n arctan

×
[
tanh

(
arctanh

[
tan

q

2

]
− ακ0z

2

)]
− iβ0z

}
,

(3)

where the quasimomentum q is confined to the zone −π �
q � π . In the following numerical calculations, the number
of waveguide sites is limited and is about m ≈ 100. Here we
take the waveguide lattice in silicon on insulator as an exam-
ple. To satisfy the assumption about the space near the event
horizon, this restriction requires that the distance between
waveguides d � 1/ακ0m = 10 μm with considering α = 1,
κ0 ≈ 0.001 μm−1. In fact, the distance between waveguides

with submicrometer precision is easily achieved for the cur-
rent (micro)-nanofabrication.

III. QUANTUM WALKS OF SINGLE PHOTONS AND TWO
INDISTINGUISHABLE PHOTONS

Since any input state can be expressed with the creation
operators a†

m and the vacuum state |0〉, the quantum walks
of photons in the emulated noninertial frame with a Rindler
metric can be calculated using Eq. (3). The probability of be-
ing located at site m when a photon is injected into the lattice
at site n = n0 is given by the photon density ρm = 〈a†

mam〉 =
|Um,n0 |2 , as depicted in Fig. 1(b). The photon exhibits an
accelerated walk: it spreads across the lattice by tunneling be-
tween the waveguides in a pattern characterized by two peaks
at the two edges of the distribution. Both contours of the two
peaks have an exponential form that is dependent on the accel-
eration α, in contrast to two strong and linear “ballistic” lobes
in the flat space [see the inset in Fig. 1(a)]. Interestingly, the
left peak toward the event horizon site is dominant, whereas
the right peak away from the event horizon site becomes weak
with the longer propagation distance. We explain that from the
perspective of the Green function. When the photons propa-
gate in a large distance for z � 2/(ακ0), the above equation
can be simplified as Um,n(z) ∼= δ(m)exp( inπ

2 − iβ0z). There-
fore, the photons are captured to the event horizon site no
matter which sites a photon is injected into, as shown in Fig. 2.
In addition, the trapping process of single photons is similar to
that of photons being captured by a black hole. The similarity
is also confirmed by the fact that the 1+1-dimensional Rindler
metric is mathematically equivalent to that of a Schwarzschild

FIG. 2. The evolution of single photons in the emulated noniner-
tial frame with different injection sites. In the calculation, the number
of waveguide sites is 300, and the acceleration is α = 1. In (a), the
site of injecting photons is n = 15; in (b), the site of injecting photons
is n = 30; in (c), the site of injecting photons is n = 45; in (d), the
site of injecting photons is n = 60. Here, λc = π/(2κ0), where κ0 is
the coupling coefficient.

black hole near the event horizon after only considering the
radial direction.

Furthermore, in order to study the quantum nature of pho-
tons in the emulated accelerated noninertial frame, we focus
on the evolution of nonclassical features with the photon-
number correlation function of 


(p,q)
m,n = 1

q!p! 〈a†p
m a†q

n aq
nap

m〉,
which indicates the probability to detect p photons in waveg-
uide site m and q photons in waveguide site n. For two
indistinguishable input photons, the correlation is 
(1,1)

m,n =
1

1+δm,n
|Um,m′Un,n′ + Un,m′Um,n′ |2, where m′ and n′ are the sites

that photons are injected into. As described below, we study
the correlation 
(1,1)

m,n for three distinct two-photon input states:
(i) the two photons are coupled into a single waveguide
[Fig. 3(a)]; (ii) the two photons are coupled into two adjacent
waveguides [Fig. 3(b)]; and (iii) the two photons are coupled
into waveguides separated by one waveguide [Fig. 3(c)]. Al-
though the correlation patterns for the three cases are a little
different, two photons have an ultrahigh probability to bunch
near the event horizon site after a large enough propagation
distance, indicating that two indistinguishable photons are
trapped.
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FIG. 3. Quantum walks of two input indistinguishable photons in the nonuniform lattice that emulate a noninertial frame. (a) The multiple
detection probability 
(1,1)

m,n at several propagation distances for which both photons are coupled into a single waveguide (n1 = n2 = 15). (b)
The multiple detection probability 
(1,1)

m,n at several propagation distances for which both photons are coupled into two adjacent waveguides
(n1 = 14, n2 = 15). (c) The multiple detection probability 
(1,1)

m,n at several propagation distances for which both photons are coupled into
waveguides separated by one waveguide (n1 = 14, n2 = 16). Here, λc = π/(2κ0), where κ0 is the coupling coefficient.

IV. QUANTUM WALKS OF PATH-ENTANGLED PHOTONS
AND THE ENTANGLEMENT IN THE EMULATED

NONINERTIAL FRAME

In addition to indistinguishable photons, what happens
to the entangled photon pairs in the emulated accelerated
noninertial frame is more attractive. The entanglement is
a counterintuitive feature of quantum physics that is at
the heart of quantum technology. In this work, we employ
path-entangled NOON states with N = 2 injected into two
adjacent waveguides |ψ〉 = 1

2 (a†2
m + e−iϕa†2

m+1)|0〉 with a dif-
ferent phase ϕ. We also use the photon number correlation

(1,1)

m,n , the probability of detecting one photon at waveguide
m and another photon at waveguide n, to depict the non-
classical features of the NOON states. As described below,
we investigate the correlation 
(1,1)

m,n for three distinct NOON
input states for ϕ = π, π/2, 0. For ϕ = π , the photons are
bunching near event horizon waveguide site after enough
propagation distance, as shown in Fig. 4(a), which conforms
to the expectation that photons are trapped in the event horizon
site. Additionally, for ϕ = π/2, although the two photons
bunching near the event horizon site have quite a probabil-
ity, there is also a probability that one photon is trapped
near the event horizon site, and the other photon escapes
[see Fig. 4(b)]. However, for ϕ = 0, one photon is captured
in the event horizon site, and the other photon is definitely
likely to escape, as shown in Fig. 4(c). The phenomena for
the last two cases are totally contrary to the recognition that
photons are always trapped by black holes. As mentioned
above, the Rindler metric, mapped by the designed coupling
waveguide lattices in this work, is mathematically equivalent

to that of a Schwarzschild black hole near the event horizon.
Our results clearly exhibit a phenomenon exists in which that
one photon of such a NOON state (|ψ〉 = 1

2 (a†2
m + a†2

m+1)|0〉)
is captured by the event horizon of a black hole and the
other photon escapes. In addition, this photon escape is to-
tally distinct from that caused by Hawking radiation, whose
mechanism is that vacuum fluctuation generated positive and
negative energy particle pairs, and the particles with negative
energy are captured by black holes, whereas the particles with
positive energy escape. In contrast, the photon escape for
path-entangled photons is caused by quantum interference.

Furthermore, according to the Unruh effect [51], the
entanglement is an observer-dependent quantity in nonin-
ertial frames, and the maximally entangled state becomes
less entangled if the observers are in an accelerated frame.
In this work, we inject this type of NOON state |ψ〉 =
1
2 (a†2

0 + a†2
1 )|0〉 between the event horizon waveguide site

(n = 0) and its adjacent waveguide site (n = 1). Among the
accelerated lattice, the event horizon waveguide is decou-
pled from other waveguides due to the coupling between the
event horizon waveguide and its adjacent waveguide site is
zero. Since the photons propagate in the event horizon site,
the photons do not interact with the outside environment
waveguide, which implies that the photons are in a still state.
However, for the photons propagating near the event horizon
waveguide site, the photons spread into the lattice in an ac-
celerated fashion, and the lattice is viewed as an accelerated
frame. A consequence of this effect is that an entangled pure
state becomes degraded. Furthermore, we exploit the loga-
rithmic negativity to determine the entanglement of such a
NOON state evolving in the nonuniform lattices (see details in
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FIG. 4. Quantum walks of path-entangled NOON photons with N = 2 (|ψ〉 = 1
2 (a†2

m + e−iϕa†2
m+1)|0〉) coupling to two adjacent waveguides

with different phases ϕ in the nonuniform lattices that emulate a noninertial frame. Here, m = 14, λc = π/(2κ0), where κ0 is the coupling
coefficient. (a) The multiple detection probability 
(1,1)

m,n at several propagation distances for ϕ = π . (b) The same as (a) for ϕ = π/2. (c) The
same as (a) for ϕ = 0.

Appendix C). Figure 5(a) exhibits the entanglement entropy
with distinct accelerations as a function of the propagation
distance. At the initial time, the NOON state has a maximal
entanglement entropy of Es = 1. In addition, the entangle-
ment entropy becomes degraded with the propagation and
tends toward Es = 0, which suggests that the state’s distill-
able entanglement vanishes. Furthermore, the decaying rate
of the entanglement entropy becomes faster with a larger
acceleration. This phenomenon is more clearly illuminated in
Fig. 5(b), which exhibits the entanglement entropy monotoni-
cally decreases with the increasing of the acceleration for the
same propagation distance of the NOON state. Additionally,
the relationship between the entanglement entropy and the
acceleration conforms to the prediction for the Unruh effect
that the entanglement is an observer-dependent quantity, and

FIG. 5. Entanglement entropy in the nonuniform optical lattice
that emulates a noninertial frame. (a) The relationship between the
entanglement entropy and the propagation length for distinct accel-
erations. The different line colors represent different accelerations
α. (b) The relationship between the entanglement entropy and the
acceleration α for the same propagation length (z = λc). Here, λc =
π/(2κ0), where κ0 is the coupling coefficient.

the maximally entangled state becomes degraded in an accel-
erated noninertial frame.

V. CONCLUSION

In conclusion, we proposed and studied the quantum walks
of single photons, correlated photons, and path-entangled
photons in a noninertial frame with the Rindler metric. Ad-
ditionally, the noninertial frame was emulated by lattices with
identical waveguides that had a linear coupling coefficient that
depended on sites inspired by transformation optics. Since the
Rindler metric is identical to that of a Schwarzschild black
hole near the event horizon when only considering the radial
direction, we clearly observed the optical trapping of single
photons and two indistinguishable photons in nonuniform
optical lattices, which conformed to a well-known classical
physical process due to the strong gravitational force of a
black hole. Counterintuitively, we found that for the opti-
cal escape for path-entangled NOON states, one photon was
captured, whereas another photon escaped. This phenomenon
was contrary to the recognition that photons should always
be captured by a black hole. Intriguingly, the counterintuitive
phenomenon for path-entangled photons had a distinct escape
mechanism compared to Hawking radiation. Furthermore,
we investigated the entanglement decay for this maximally
entangled state in the emulated noninertial frame, and the
degeneracy was conformal to the prediction made using the
Unruh effect. We believe that this investigation of entan-
gled photons near the event horizon of black holes emulated
by optical lattices will provide a platform for understanding
quantum effects in the context of general relativity, and even
the nature of quantum gravity. On the other hand, inspired
by the concept in general relativity, we can design such
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novelty optical devices to manipulate the classical and quan-
tum property of photons, such as the omnidirectional absorber
for photons inspiring by black holes and the entanglement
manipulation in a noninertial frame.
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APPENDIX A: THE MAPPING RELATION BETWEEN
NONUNIFORM WAVEGUIDES LATTICES AND

SPACE-TIME WITH RINDLER METRIC

We consider the line element of a two-dimensional
Schwarzschild space-time with only radical direction (dθ =
0, dϕ = 0)

ds2 = −(1 − rs/r)dt2 + (1 − rs/r)−1dr2. (A1)

Here rs is the radius of the Schwarzschild black hole. When
considering the space near the event horizon r = rs + ρ2/4rs

and 0 < ρ � rs, the term of the Schwarzschild metric has
a simplified form 1 − rs/r = 1 − (1 + ρ2/4r2

s )−1 ∼= ρ2/4r2
s .

Thus, Eq. (A1) can be written as ds2 = −(ρ/2rs)2dt2 + dρ2,
which has the same form as the Rindler metric. Moreover,
the curvature 1/2rs plays the role of the acceleration α in the
Rindler metric.

We here present the details of the derivation of the mapping
relation between nonuniform waveguide lattices and space-
time with the Rindler metric. According to transformation
optics, the evolution of photons in the Rindler metric as Eq. (1)
is equivalent to that propagated in such a medium:

neff =
√

−g11/g00 = 1/αx, (A2)

where g00 = −α2x2, g11 = 1. And, photons evolve in such a
medium and have a corresponding velocity as

v = 1/neff = αx. (A3)

Here nature units have been adopted (G = c = 1).
We exploit evanescently coupled photonic waveguide

lattices with designed coupling coefficient to achieve the

required inhomogeneous effective refractive index. The
dynamics of single-photon wave packet in photonic waveg-
uide lattice can be described by a set of coupled discrete
Schrödinger equations, which is derived from Schrödinger-
type paraxial wave equation by employing the tight-binding
approximation:

i∂ϕm/∂z = β0ϕm − κmϕm−1 − κm+1ϕm+1, (A4)

where ϕm is the complex field amplitude of site m, z is the
propagation distance along the waveguides mapping the time
variable, β0 is on-site energy of each waveguide, and param-
eter κm represents the coupling strength between the adjacent
sites. Taking coupling coefficients as κm = κm+1 = κ and sub-
stituting the complex field amplitude with the plane-wave
solution ϕm = Aexp(iβxmd + iβzz), we obtain the dispersion
connecting transverse and longitudinal dynamics as

βz = β0 − 2κ cos(βxd ), (A5)

where A is the amplitude of plane wave, βx (βz) is transverse
and longitudinal wave vector, d is waveguide spacing. After
the photons evolve in such a waveguide over distance �z, each
transverse component gains a phase � = βz(βx )�z, and the
corresponding transverse shift of a wave centered around βr

is �x = ∂�/∂βx = �z ∂βz/∂βx. Owing to that the propaga-
tion distance z in the coupled waveguide equation plays the
role of the time t in the Schrödinger equation, we define the
maximum velocity of wave packets in such a system as

vmax = �x/�z = ∂βz/∂βx = 2κd. (A6)

By comparing Eq. (A3) and Eq. (A6) and discretization
processing, we obtain the coupling coefficients as

κ/κ0 = αm/2. (A7)

Here we take x = md , m is waveguide sites, and κ0 is the
normalized coupling coefficient.

To emulate the Schwarzschild black hole near the event
horizon, it requires this condition αx � 1 in the Rindler
metric of Eq. (1). In the respect of waveguide lattices, the
distance between waveguides need satisfy this precondition
d � 1/mακ0. In our computations and plots, the number of
waveguides seems a large value and is about m ≈ 100, which
means there is a critical distance between waveguides. Here
we take waveguide lattices in silicon on insulator as an ex-
ample. After assuming α = 1, κ0 ≈ 0.001 μm−1, m ≈ 100,
this restriction requires that d � 10 μm. Such a distance can
be easily achieved by the current (micro)-nanofabrication.

APPENDIX B: THE GREEN FUNCTION OF SUCH NONUNIFORM OPTICAL LATTICES

To obtain the Green function of the emulated accelerated lattice with linear coupling coefficient as waveguide sites, we take
the Hamilton operator:

H = −ακ0

2

n=+∞∑
n=−∞

n(|n〉〈n + 1| + |n + 1〉〈n|) + β0

n=+∞∑
n=−∞

|n〉〈n + 1|. (B1)

Alternatively, one can use a representation in Bloch waves:

|k〉 =
n=+∞∑
n=−∞

|n〉〈n|k〉 =
√

1

2π

n=+∞∑
n=−∞

|n〉eink, (B2)
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which satisfies the Bloch condition.

〈n + 1|k〉 = eik〈n|k〉,

with quasimomentum k confined to the Brillouin zone −π � k � π . By means of the identities
n=+∞∑
n=−∞

n〈k′|n + 1〉〈n|k〉 = e−ik′
n=+∞∑
n=−∞

n〈k′|n〉〈n|k〉 = e−ik′ 1

2π

n=+∞∑
n=−∞

nein(k−k′ ) = −e−ik′
i
∂δ(k′ − k)

∂k
(B3)

n=+∞∑
n=−∞

n〈k′|n〉〈n + 1|k〉 = eik
n=+∞∑
n=−∞

n〈k′|n〉〈n|k〉 = eik 1

2π

n=+∞∑
n=−∞

nein(k−k′ ) = −eiki
∂δ(k′ − k)

∂k
(B4)

We obtain that the tight-binding Hamiltonian is diagonal:

〈k′|H |k〉 = δ(k′ − k)H (k), (B5)

H (k) = −ακ0 cos (k)i
∂

∂k
+ β0. (B6)

The eigenstates of the Hamiltonian are found by integrating the first-order differential equation

−ακ0 cos (k)i
∂

∂k
�(k) + β0�(k) = E�(k), (B7)

with the periodic boundary condition �(k + 2π ) = �(k), and Em = β0 − mακ0
2 , one can rewrite Eq. (B7)

�m(k) = 〈k|�m〉 =
√

1

2π
exp

[
2(Em − β0)arc tan h

(
tan k

2

)
ακ0

]
=

√
1

2π
exp

[
−imarc tan h

(
tan

k

2

)]
. (B8)

The description in terms of the Wannier states with the Fourier transformation:

�m(n) = 〈n|�m〉 =
∫ π

−π

dk〈n|k〉〈k|�m〉 = 1

2π

∫ π

−π

dkei[nk−m·arc tan h(tan k
2 )] (B9)

In the basis of Wannier states one can obtain the propagator as

Unn′ = 〈n|U (z)|n′〉
=

∑
〈n | �l〉

l

e−iEl z〈�l | n′〉

=
∑

l

1

2π

∫ π

−π

dkei[nk−l·arc tan h(tan k
2 )]e−i(β0− lακ0

2 )z 1

2π

∫ π

−π

dk′ei[−n′k′+l·arc tan h(tan k′
2 )]

=
∑

l

1

2π

1

2π

∫ π

−π

∫ π

−π

dkdk′ei[nk−l·arc tan h(tan k
2 )−(β0− lακ0

2 )z−n′k′+l·arc tan h(tan k′
2 )]

=
∑

l

1

2π

1

2π

∫ π

−π

∫ π

−π

dkdk′ei[nk−n′k′−β0z−l·arc tan h(tan k
2 )+l ακ0z

2 +l·arc tan h(tan k′
2 )]

= 1

2π

∫ π

−π

∫ π

−π

dkdk′ei[nk−n′k′−β0z]δ

(
arc tan h

(
tan

k

2

)
− arc tan h

(
tan

k′

2

)
− ακ0z

2

)

= 1

2π

∫ π

−π

dk exp

{
ink − i2n′arc tan

[
tan h

(
arc tan h

(
tan

k

2

)
− ακ0z

2

)]
− iβ0z

}
, (B10)

when ακ0z/2 � 1, which means photons propagating with large enough distance, one can simplify the Green function as

Unn′ ≈ 1

2π

∫ π

−π

dk exp (ink) exp
(

in′ π
2

− iβ0z
)

= δ(n) exp
(

in′ π
2

− iβ0z
)
. (B11)

APPENDIX C: THE GREEN FUNCTION OF SUCH NONUNIFORM OPTICAL LATTICES

To calculate the entanglement entropy in the accelerated lattice, we exploit the logarithmic negativity to determine the
entanglement of such a NOON state (|ψ〉 = 1

2 (a†2
0 + a†2

1 )|0〉) evolving in the accelerated lattices. At the initial time, we also

depict the entangled pure state |ψ〉 =
√

2
2 (|2〉0 + |2〉1), which means two indistinguishable photons have the same probability to
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concurrently bunching at the event horizon waveguide site (m = 0) or its adjacent waveguide site (m = 1). After evolving of the
path-entangled NOON state in the accelerated lattice, the state can be depicted as

|ψ〉 =
∑

m

cm|2〉m +
∑
m,n

dmn|1〉m|1〉n, (C1)

where cm represents the probability amplitude of two indistinguishable photons concurrently bunching at m waveguide site, and
dmn is the probability amplitude that one photon is locating at m waveguide site and the other photon is locating at n waveguide
site. We take the same method as Ref. [51] to numerically calculate the entanglement entropy. In our analysis we trace over
all the waveguide sites except for the event horizon waveguide site (m = 0) and its adjacent waveguide site (m = 1). Among
the accelerated lattice, the event horizon waveguide is decoupled from other waveguides due to the coupling between the event
horizon waveguide and its adjacent waveguide site is zero. As photons propagating in the event horizon site, photons have no
interaction with outside environment waveguide, which implies that photons are in a still state, whereas for photons propagating
near the event horizon waveguide site, photons acceleratedly spread into the lattice which is viewed as in an accelerated frame.
And the density matrix ρ = |ϕ〉AR〈ϕ|AR (A represents the event horizon waveguide site m = 0 and R represents the adjacent
waveguide site m = 1) can be written as

ρ =

|0A0R〉 |0A1R〉 |0A2R〉 |1A0R〉 |1A1R〉 |1A2R〉 |2A0R〉 |2A1R〉 |2A2R〉
〈0A0R| ρ11 0 0 0 0 0 0 0 0
〈0A1R| 0 ρ22 0 ρ24 0 0 0 0 0
〈0A2R| 0 0 ρ33 0 0 0 0 0 0
〈1A0R| 0 ρ42 0 ρ44 0 0 0 0 0
〈1A1R| 0 0 ρ53 0 ρ55 0 ρ57 0 0
〈1A2R| 0 0 0 0 0 0 0 0 0
〈2A0R| 0 0 ρ73 0 0 0 ρ77 0 0
〈2A1R| 0 0 0 0 0 0 0 0 0
〈2A2R| 0 0 0 0 0 0 0 0 0

. (C2)

By calculating the eigenvalue of the partial transpose of density matrix ρ, we sum over all the negative values and obtained
the total number NT . The entanglement entropy is defined as

Es = log2(1 + 2|NT |). (C3)
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