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Realization of photonic charge-2 Dirac point
by engineering super-modes in topological
superlattices
Mengying Hu1,3, Kun Ding 2,3, Tong Qiao1, Xi Jiang1, Qiang Wang1, Shining Zhu1 & Hui Liu 1✉

Quite recently, an unconventional variety of fourfold linear band degeneracy points has been

discovered in certain condensed-matter systems. Contrary to standard 3-D Dirac monopoles,

these quadruple points known as the charge-2 Dirac points are characterized by nonzero

topological charges, which can be exploited to delve into hitherto unknown realms of

topological physics. Here, we report on the experimental realization of a charge-2 Dirac point

by deliberately engineering hybrid topological states, called super-modes, in a 1-D optical

superlattice system with synthetic dimensions. Utilizing direct reflection and transmission

measurements, we propose the existence of the synthetic charge-2 Dirac point in the visible

region. We also show an experimental approach to manipulating two spawned Weyl points

possessing equal charge. Topological end modes resulting from the charge-2 Dirac point can

be delicately controlled within truncated superlattices, opening a pathway to rationally

engineer local fields with intense enhancement.
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Ever since the remarkable discovery that fermion-like energy
excitations predicted by relativistic quantum field theories
can emerge in electronic crystals whose band structures

display linear band degeneracy points, a great deal of theoretical
and experimental interest has been attracted in exploring such
materials known as topological semimetals. The corresponding
gapless semimetal phases are regarded as novel topological states,
which open a new era in investigating condensed-matter physics.
Substantial attention is engaged by Weyl points (WPs)1–6 and 3-
D Dirac points (DPs)7,8. WPs that reported actively in electronic
systems are identified as synthetic magnetic monopoles in
momentum space, carrying topological charges (Chern numbers)
of ±1 and featured by “Fermi arc” surface states6,9. DPs can be
viewed as two overlapping WPs with opposite topological char-
ges, predicted and observed in crystals as well. However, it has
been recently demonstrated that unconventional topological
points appear in certain crystal structures10–18, which cannot be
described in accordance with an emergent relativistic field theory.
On such candidate is the charge-2 Dirac point (CDP), existing as
a double-Weyl phonon in transition metal monosilicides14,15. It’s
generated by merging a pair of identically charged WPs, and
hence possessing the topological charge of ±2. Consequently,
CDPs are radically distinct from traditional DPs and can give rise
to novel physical phenomena.

While topological semimetals found in nature exhibit exotic
phases of matter, great process in understanding such band
topology has also been impelled by the research on engineered
systems. The core idea of engineering lattices is to create emer-
gent band structures analogous to those formed in electronic
crystals, which can be highly tunable and have fundamentally
discriminative properties, providing us unprecedented opportu-
nities of studying topological physics. Recent developments of
experimental techniques have propelled ultracold atomic
gases19,20, photonics4,21–26, and acoustics27–30 as promising sys-
tems to engineer WPs and DPs with novel emergent properties.
Constructing complex 3-D structures with certain symmetry
broken is perceived as the most common strategy4,21–24,27–29,
whereas another route to realize topological points is based on
synthetic dimensions30–35. The initial motivation for employing
synthetic dimensions was to explore fundamental physical effects
in a space with a higher dimensionality via introducing con-
trollable artificial dimension(s) in addition to the real spatial
degree(s), in especial topological effects within systems beyond 3-
D space. However, lately the interest of synthetic dimensions is
fueled by the capacity to study topological features of 3-D
degenerate points in 2-D (1-D) systems, dramatically simplifying
experimental designs19,26,30,34,36,37. Either of the methods has
been extensively exploited for WPs and DPs in the recent years.
Nevertheless, as for the CDP, the only engineered system sup-
porting it reported so far is made up of an acoustic metamaterial
corresponding to a classical 3-D phononic crystal with a non-
symmorphic structure38. To our knowledge, in the visible regime,
neither 3-D engineered systems nor 2-D (1-D) structures
equipped with synthetic dimensions have been established to
realize CDPs.

Here, we propose an experimentally feasible scheme to realize
CDPs in a 1-D optical superlattice system with working fre-
quencies lying in the visible region harnessing synthetic dimen-
sions, and manipulate the spawned WPs with the same
topological charges. To attain this, we start by designing suitable
photonic modes interacting with each other to form a 1-D
superlattice. Instructively, interfaces between distinct topological
phases of matter host robust and exotic quantum states, the use of
which acts as a strong driver of current research in condensed
matter39–43. Hence, we stack together two kinds of photonic
crystals (PCs) belonging to different class of topology to create

such topological interface modes (TIMs), and on this basis
topological states of photons associated with CDPs can be fully
investigated under the introduction of synthetic space, facilitating
the experimental realization, which is otherwise elusive at such
frequencies. Furthermore, intriguing topological-protected end
modes emerge at the termini of the truncated superlattice,
guaranteed by the CDP with nonzero topological charge. More
precisely, these end modes uniquely result from the bulk-edge
correspondence44 for each of the two WPs producing the CDP in
synthetic space, which in turn could be tuned independently.
Such topological end modes resemble surface states in Weyl
semimetals2,3,6, holding great potential for applications in non-
linear optics45, quantum optics46, and lasers47 owing to strongly
enhanced localized fields.

Results
Design concept of the creation of CDPs. The starting point of
our scheme is to construct a 1-D topological superlattice by use of
TIMs existing at interface of two PCs with discriminative topo-
logical class. Specifically, our lattice consists of these two PCs
stacked alternatively, in which each interface supports a TIM that
hybridizes with each other to form a novel variety of artificial
collective modes, resulting in a 1-D superlattice band structure
where a single TIM serves as the photonic orbital. Similar het-
erostructures have previously been rendered for grapheme
nanoribbons41,42 and topological insulator superlattices43.

For CDPs to occur, we require two more dimensions added to
the wave vector dimension provided by the existing 1-D
superlattice. It’s noticeable that the coupling of nearest-
neighbor TIMs, inclusive of both the magnitude and the sign,
can be feasibly tuned by altering the repeated number of the PC’s
unit cell between adjacent interfaces. Moreover, the on-site
resonance frequency of a TIM can be highly controllable if we put
a defective unit with adjustable thickness at the interface.
Therefore, the modulation of the coupling between adjacent
TIMs and the on-site frequency of a single TIM is readily
available, which allows us to parameterize these two variables and
treats them as two artificial momentum dimensions. Through
meticulous design, WPs can thus arise in such 3-D synthetic
space owing to the hybrid modes designated as the super-modes,
but the realization of CDPs begs for the overlap of two
equivalently charged WPs. To this end, we exploit the polariza-
tion degree of light. The fact that TIMs response discriminately to
transverse-magnetic (TM) and transverse-electric (TE) polarized
light appends a so-called ‘pseudospin’ degree of freedom to the
synthetic space, and the appearance of a CDP is finally achieved
by merging a pair of WPs with the same topological charge but
different pseudospins. Surprisingly, the CDP can conversely be
split into two spawned WPs in synthetic space, whose trajectories
are tunable via utilizing the pseudospin degree. Such procedure
has never been revealed in practice prior to us, offering the
evidence that our proposed artificial systems are used to not only
explore topological excitations discovered before, but also
navigate a way of studying novel phenomena. In particular, we
design an applicable and smart strategy to detect the CDP and
spawned WPs straightforwardly, which has never been reported
before us.

The adjustability of a single TIM. We first provide a detailed
introduction to the proposed structure holding a single TIM that
is highly adjustable. As shown in Fig. 1a, it consists of two kinds
of PCs (PC-p and PC-q), and a defective unit D. The unit cells of
PC-p, PC-q, and the defective unit D are represented as p=
M1d1/2M2d2M1d1/2, q=M2d2/2M1d1M2d2/2, and D=M1dM2d.
Here, M1 and M2 denote two dielectric materials and the
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subscripts stand for the thickness of associated layers. The
stacking structure built up of repeated p(q)-type unit cells can
thus be described as p6(q6), in which the subscripts are employed
to show the number of unit cells. Hence, we adopt p6Dq6 to label
the structure shown in the bottom of Fig. 1a, which can support a
single TIM48 as discussed in the Supplementary Note 1. Experi-
mentally, such structure is fabricated with e-beam evaporation
and we fabricate three samples with identical d1= 70 nm and
d2= 79 nm, but setting d= 0 nm (sample I), d= 5 nm (sample
II), and d= 10nm (sample III), respectively. Figure 1b exhibits the
scanning electron microscope (SEM) picture of sample II with the
highlighted p-type and q-type unit cells. The measured trans-
m0ission spectra of the sample II (III) are given in Fig. 1c by black
(magenta) circles under normal incident light (kx= 0 μm−1),
where the common band gaps (bands) of the two PCs are high-
lighted as the white (gray) regions. It can be seen that sharp peaks

inside the gap appear, which are attributed to the excitation of a
TIM. To verify this, Fig. 1d exhibits the calculated spatial dis-
tribution of the electric field profile for the associated state of
Sample II, from which we can see that such state decays rapidly
away from the position of D—a distinctive signature of the TIM.
We can also see that the TIM peak of sample III lies at the lower
frequency than that of sample II in Fig. 1c, showing the d-
dependent feature of resonance frequency of TIMs. To make it
clear, resonance frequencies of TIMs for these three samples are
marked by red open circles in Fig. 1e, decreasing significantly with
increasing value of d. This confirms the fact that modulating
thickness of the defective unit provides us a feasible strategy to
adjust on-site frequencies of TIMs.

Furthermore, the TIM exists for both TM and TE polariza-
tions, but they are degenerate in the case of normal incidence
(kx= 0 μm−1). To lift such degeneracy, we need to use oblique

Fig. 1 Construction of one topological interface mode (TIM) and its tunability. a The proposed structure for a single TIM. The upper panel shows the unit
cell of both photonic crystals (p-type and q-type unit cell) and the configuration of the defective unit. All of them are made up of alternating layers of two
dielectric materials, denoted as M1 (white) and M2 (gray). The thickness notations are indicated on each layer. b Scanning electron microscope (SEM)
picture of Sample II. The orange arrowhead shows the direction of incident light. Here, we employ HfO2 as M1 (bright region) and SiO2 as M2 (dark region).
The refractive indices of HfO2 and SiO2 are 2 and 1.46, respectively. c Measured transmission spectra of Sample II under normal incidence, oblique
incidence of transverse-magnetic (TM) waves, and oblique incidence of transverse-electric (TE) waves are shown by black, red, and blue circles,
respectively. The oblique incident angle is 30°. The magenta circles show measured transmission spectrum of Sample III under normal incidence. d The
calculated electric field profile of the TIM for Sample II under normal incidence is plotted by the solid red line. The gray line shows the corresponding
refractive index profile. e d-dependent resonance frequency of the TIM with kx= 0 μm−1. f The in-plane dispersion relation of the TIM for the TM (red line)
and TE (blue line) polarizations excited in sample II. In both e and f, solid lines are calculated by the simulation software COMSOL, and open markers are
obtained directly from experimental data. The corresponding experimental transmission spectra of the black, red, blue, and magenta arrowheads in e and f
are shown in c. The ranges of ±standard deviation of measured data are shown by the error bars.
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incident light with kx ≠ 0 μm−1, and hence we measure the
transmission spectra of sample II under the TM (TE) polarized
light with oblique incident angles (kx= 6 μm−1), as shown by red
(TM) and blue (TE) open circles in Fig. 1c, confirming the
removal of the degeneracy. Figure 1f shows the measured TIM
frequencies as a function of kx for Sample II for both
polarizations. It is noticeable that the splitting between TM
(red) and TE (blue) polarized TIMs increases monotonically with
the increment of kx, matching well with the calculated results
(solid lines). Therefore, such splitting between TM and TE
polarized TIMs affords us another degree of freedom to
manipulate the TIMs.

Coupling signs and magnitudes between two TIMs. Next, we
investigate the effects of q-type and p-type PCs as the coupling
channel between two TIMs. As shown schematically in Fig. 2a,
each structure is made up of stacking PCs (p-type and q-type)
separated by two defective units. With the same notation in
Fig. 1a, two designs in Fig. 2a can then be denoted as p6DqNDp6
and q6DpNDp6, respectively, where the subscript N is the number
of unit cells of associated PC. The overlapping of two individual
TIMs with the same frequency ω0 gives rise to two hybridized
TIMs, one symmetric mode (S) at ωS and one antisymmetric one

(AS) at ωAS. Here, the symmetric types are defined by the sym-
metry of the electric field which uses the center of pN(qN) as the
reference point. In the following, we demonstrate that the nor-
malized coupling strength J≡ (ωS− ωAS)/2ω0 (see Methods),
which describes the coupling amplitudes and signs, is directly
controlled by N for either q-type or p-type PC in the middle.

We start by considering the q-type PC as the coupling elements,
namely p6DqNDp6 with normal incidence (kx= 0 μm−1). Figure 2b
shows the transmission spectra of p6Dq6Dp6 and p6Dq7Dp6 (black
circles). The parameters of both p-type and q-type unit cells are
identical to those in Fig. 1b except that d of the defective unit is
0 nm. For both samples, we see two transmission peaks owing to
two hybridized TIMs (S and AS). For the sample p6Dq6Dp6, ωS <
ωAS such that J < 0. While for the sample p6Dq7Dp6, ωS >ωAS such
that J > 0. In Fig. 2c, the N-dependence of J for q-type PC case,
which is extracted from experimental data, is shown by blue
downward-pointing triangles. We can see that |J| possesses a
negative association with N, and the sign of J totally relies on the
parity of N. For the samples p6DqNDp6, if Nis odd, J < 0, otherwise
J > 0. This is because the accumulated phase for each unit cell is π.

We then explore J for the p-type PC as the coupling channel
case, namely the samples q6DpNDp6. The corresponding results
are present as red upward-pointing triangles in Fig. 2c, in which J

Fig. 2 Coupling signs and magnitudes between two topological interface modes (TIMs). a Sketches of two different designs of coupled TIMs. The red
and blue curves show schematic mode profiles of two individual TIMs. b Measured transmission spectra of p6Dq6Dp6 (upper panel) and p6Dq7Dp6 (lower
panel) with kx= 0 μm−1 and kx= 6 μm−1 (incident angle 30°) for transverse-magnetic/transverse-electric (TM/TE) polarizations. c Normalized coupling
strength J as a function of N for both p-type (red markers) and q-type (blue markers) PCs. The filled squares (p-type) and circles (q-type) are calculated by
the simulation software COMSOL, whereas open upward-pointing (p-type) and downward-pointing (q-type) triangles are extracted from experimental
data. The downward tendency of the magnitude of normalized coupling strength |J| versus the number of unit cells of coupling element N is shown by
dotted lines. d Dependence of the normalized coupling strength J on the in-plane wave vector kx for both TM and TE polarizations. All lines are calculated
by COMSOL, while open markers are obtained from experimental data. Also shown are the ranges of ±standard deviation for experimental data in c and
d by error bars.
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has the same magnitude as that of p6DqNDp6 but with opposite
signs for a given N. In order to confirm these results, we also plot
the results calculated by a commercial finite element simulation
software (COMSOL) in Fig. 2c, which shows good agreements
with experimental ones. The sign of J is determined by the
coupling between two TIMs. More details of two coupled TIMs
are provided in the in the Supplementary Note 2.

Moreover, we investigate coupling effects for nonzero in-plane
wave vector (kx < 0 μm−1). Figure 2b also depicts the measured
transmission spectra of the two samples p6Dq6Dp6 and p6Dq7Dp6
for TM (red open circles) and TE (blue open circles) polarizations
with kx= 6 μm−1, indicating the polarization-dependent char-
acteristic of the hybridized TIMs. To get a further step, we plot J
as a function of kx in Fig. 2d, where p6(q6) and p7(q7) are
employed as representatives of the even and odd N cases. The
result clearly shows that the sign of J changes in the same way as
that of kx= 0 μm−1. However, given a fixed pN(qN), the
magnitude of J due to the TM mode has discriminated variation
tendency compared with J of the TE one as kx increases, which
almost remains the same for the former while decreases
significantly for the latter. The calculated results achieved by a
COMSOL via the optic module are shown in Fig. 2d by lines,
which used to confirm the experimental results.

Realization of the CDPs and spawned WPs in synthetic space.
According to the previous analysis, the eigenfrequency of a single
TIM is readily controllable, and the coupling (including signs and
magnitudes) between two adjacent TIMs is highly tunable. All of
these are sufficient for us to construct a 1-D topological super-
lattice analogous to a dimerized atomic chain, where we regard
TIMs as photonic orbitals. The hybridization of them forms
hybrid orbitals, which are referred to as super-modes here. As a
consequence, we deliberately design an optical superlattice to
create a periodic sequence of TIMs, which is built up of alter-
nating structures of pm, DA, qn, and DB, as illustrated in Fig. 3a.
The i-th unit dimer with two sublattice sites Ai and Bi is defined
as [pm/2DAqnDBpm/2] marked by the magenta dashed rectangle in
Fig. 3a. In this notation, the subscripts A and B denote two dif-
ferent defective units with their respective thickness dA and dB,
and the subscripts m(n) labels the number of unit cells of the q
(p)-type PC. We then express the on-site resonance frequencies of
two adjacent TIMs as ωA,s= ωs+ Δs and ωB,s= ωs− Δs, where
s= ↑↓ denoting two polarizations, ωs≡ (ωA,s+ ωB,s)/2, and
Δs≡ (ωA,s− ωB,s)/2. Here, Δs refers to a staggered on-site fre-
quency offset regarding ωs as a reference value. As shown in
Fig. 1, the values of Δs are determined by the difference (dA− dB).
The coupling PCs qn(pm) directly determine the intra(inter)dimer
coupling strength, denoted as J1,s(J2,s). What’s more, a remarkable
feature of our superlattice system is the adjustability of the cou-
pling sign, since that m and n are simultaneously odd or even
numbers leads to J1,sJ2,s > 0, otherwise J1,sJ2,s < 0. Taking this into

account, we introduce an additional parameter g as g � sgn
J2;s
J1;s

� �
,

and utilize Js≡ (−gJ1,s− J2,s)/2g and δs≡ (−gJ1,s+ J2,s)/2g for
further discussion. As shown in Fig. 2, the values of δs are
determined by (m− n). Accordingly, the Hamiltonian for the
super-modes formed by multiple TIMs can be written as an
effective dimerized model.

H ¼ P
i;s¼";#

� Js þ δsð Þayi;sbi;s � g Js � δsð Þayiþ1;sbi;s þ h:c:

þ ωs þ Δsð Þayi;sai;s þ ωs � Δsð Þbyi;sbi;s

ð1Þ

Here, ayi;s(b
y
i;s) and ai,s(bi,s) are the creation and annihilation

operators of the TIM lying on Ai(Bi) site of the chain,
respectively. Since DA and DB have negligible effect on the
coupling strength, δs and Δs can be treated as independent
parameters (see details in the Supplementary Note 3). If we
merely restrict ourselves to the case of zero in-plane wave vector
(kx= 0 μm−1), this Hamiltonian represents a novel 1-D
Su–Schrieffer–Heeger (Rice–Mele) chain with dA= dB(dA ≠ dB)
and hence Δs= 0(Δs ≠ 0), of which band structures and
topological properties such as topological end states are analyzed
detailedly in the Supplementary Note 4. Based on the fact that the
degeneracy of TM and TE polarized TIMs lifts when kx ≠ 0 μm−1,
ωs is a function of kx such that ωs(kx)= ω0+ τs(kx), where ω0≡
ωs(0) denotes the eigenfrequency of the kx= 0 μm−1 case and
τs(kx) refers to the frequency shift compared with ω0. The
Hamiltonian (Eq. 1) can thus be transformed into the Bloch
momentum space, and expressed in the pseudospin up (s= ↑)
(TM) and down (s= ↓) (TE) representation as

H ¼ ~τσz � σ0 þ
~d" � σ 0

0 ~d# � σ

 !
: ð2Þ

Here, we introduce ð~dsÞx ¼ � Js þ δsð Þ � g Js � δsð Þ cos ξΛ,
ð~dsÞy ¼ �gðJs � δsÞ sin ξΛ, ð~dsÞz ¼ Δs, and ~τ ¼ 1

2 ðτ"ðkxÞ�
τ#ðkxÞÞ, in which Λ is the length of the unit dimer, ξ serves as
the Bloch wave vector in the z direction and σ stands for Pauli
matrices. Thereby, the eigenvalue of the Hamiltonian (Eq. 2)
could be figured out, denoted as ~ω � ω� ω0 with ω0 ¼
ω0 þ 1

2 τ" kxð Þ þ τ# kxð Þ
� �

.
With respect to the special case at kx= 0 μm−1, TM and TE

polarized super-modes are degenerate since ~τ ¼ 0 and ~d" ¼ ~d#.
Hence we introduce the parameters δ≡ δ↑= δ↓(kx= 0 μm−1) and
Δ≡ Δ↑= Δ↓(kx= 0μm−1), together with the original Bloch wave
vector ξ, to form a 3-D synthetic space (δ,ξ,Δ). The Hamiltonian
then can be transformed into H(δ,ξ,Δ)= (H↑, 0; 0, H↓), in which
Hs¼";# � ~ds¼";# � σ. As a result, the associated four bands cross at
the degenerate point (δ,ξ,Δ)= (0, 0, 0). To characterize this
degenerate point, we expand the two-by-two Hamiltonian Hs

around it:

Hs ¼ δvδx;sσx þ ξvξy;sσy þ ΔvΔz;sσz; ð3Þ
where vδx,s=−2, vξy,s=ΛJs, and vΔz,s= 1 (see “seehods”). The

above Hamiltonian exhibits a standard Weyl Hamiltonian form,
and thus the band crossing point for either TM or TE super-
modes can be regarded as a WP in the synthetic space. An
important characteristic of a WP is the capacity to carry a
topological charge, which corresponds to its chirality cs(= ±1).
The Hamiltonian (Eq. 3) possesses the form of H(q)= qivijσj with

cs ¼ sgn det vij;s
h i� �

, indicating that cs is equal to �sgn Jsð Þ. This
shows that the chirality cs of WPs relies on the sign of Js, which is
decided by the parity of m(n) (See details in the Supplementary
Note 5). According to the degeneracy of TM and TE polarized
super-modes when kx= 0 μm−1, c↑= c↓ such that the four-band
Hamiltonian indicates an overlapping of two WPs with the same
topological charge in synthetic space. Shown in Fig. 3b as a
transparent blue cone in the δ− Δ space at ξ= 0, such kind of
band crossing is known as Charge-2 Dirac point (CDP), whose
Hamiltonian is the direct sum of two identical spin-1/2 WPs at
the Brillouin zone center and thus has a Chern number of ±2,
contrary to a conventional 3-D Dirac point consisting of two WPs
with opposite Chern numbers. The band dispersion in the
(ξ,Δ)= (0,0) plane (highlighted by black solid lines in Fig. 3b) is
illustrated in Fig. 3c, showing linear property adjacent to the
degenerate point. Through such a way, we have provided a novel
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method to realize the generalized CDPs with c ¼Ps cs ¼ ± 2 in
the optical frequency regime by manipulations of 1-D optical
superlattices exploring the concept of synthetic dimensions.

Such a four-fold cone can be detected unambiguously in
experiment. We start by making five samples with structural
parameters (m,n)= (4,4), (4,6), (4,8), (6,4), and (8,4), respec-
tively, featured by dA= dB such that Δ= 0. We then measure
the transmission spectra under normal incidence for these five
samples to obtain locations of ~ω. Figure 3d presents the transmis-
sion spectra as a function of Δf (utilizing ω0 as the reference) for
the sample (m,n)= (6,4), where the black dashed lines emphasize
the super-modes band edges. In Fig. 3b, c, we employ black
squares to mark locations of such band edges, which almost lie on
the crossing lines indicating a great agreement with the theory.
The locations of ~ω for other four samples are plotted as well by
different dots in Fig. 3b, c, all of which are situated at the crossing
lines and thus exhibit the characteristic of linear crossing for the
Dirac point, matching with the theory quite well (See details in
the Supplementary Note 6). Moreover, we fabricate another two
samples with (m,n)= (4,6) and (6,4), characterized by dA ≠ dB
and hence Δ ≠ 0. The results gotten from experimental data are
also shown in Fig. 3b, well-located at the cone’s surface.
Consequently, the experimental results support our theory of
the CDP, and hence the realization of a CDP in the visible light
range is achieved.

When kx ≠ 0 μm−1, the degeneracy of TM and TE super-modes
is removed, lending to ~τ ≠ 0 and ~d" ≠ ~d#. Therefore, nonzero kx

will split the CDP at kx= 0 μm−1 into two WPs of TM and TE
polarized super-modes, respectively. The solid surface in Fig. 3e
shows such two WPs in the δ−Δ space at ξ= 0 with kx= 6 μm−1,
and the dispersion in the (ξ,Δ)= (0,0) plane are present in Fig. 3f
by red(blue) solid lines for TM(TE) modes. To demonstrate it, we
measure the transmission spectra under oblique incident light of
the seven samples defined in Fig. 3b, c. We choose to show the
transmission spectra of the sample (m,n)= (6,4) in Fig. 3d, and
the band edges of the super-modes for TM and TE polarizations
are highlighted by red and blue vertical lines. We see that the band
edges red-shifted (blue-shifted) for TE (TM) polarization, which
agrees with theoretical results in Fig. 3e. We further mark the
locations of associated ~ω of all these samples in Fig. 3e, f with red
(blue) color for the TM (TE) super-modes. The consistency
between the theory and experiments indubitably corroborates our
idea that the CDP is separated into two WPs in the synthetic space
with the frequency splitting equals 2~τ resulting from the nonzero
kx. As a result, ~τ can be treated as the effective Zeeman term,
which increases with the enhancement of the “magnetic field”
(that is, the increase of kx). Note that varying kx has no effect on cs
of both WPs, so c↑= c↓ as those of kx= 0 μm−1 (See details in the
Supplementary Note 5).

Topological end modes in truncated optical superlattices. In
contrast to the conventional 3-D DPs, which carry no net topo-
logical charge and thus are lack of topological surface states, the
CDPs arising in our system characterized by Chern numbers

Fig. 3 Realization of a Charge-2 Dirac point and its evolvement into Weyl points in synthetic space. a The superlattice of topological interface modes
(TIMs) is shown in the lower panel, and the schematic representation of effective dimerized model is given in the upper panel. b Measured transmission
spectra as a function of Δf for the sample with (m,n)= (6,4) and (dA,dB)= (0,0) ((δ,ξ,Δ)= (3.8,0,0)) under normal incidence (kx= 0 μm−1) and oblique
incidence of transverse-magnetic/transverse-electric TE/TM waves (kx= 6 μm−1). c, d Eigenfrequency surface in the δ−Δ space at c kx= 0 μm−1 and
(d) kx= 6 μm−1. The upward-pointing triangles, downward-pointing triangles, squares, and rhombuses mark the bulk band edge frequencies obtained from
experimental data of four samples with (m,n)= (4,6), (4,8), (6,4), and (8,4), respectively. The asterisks stand for the center of two gapless bands of super-
modes by measuring transmission spectra of the sample with (m,n)= (4,4). The thickness of defective units (expressed in nanometers) for all the five
samples are (dA,dB)= (0,0). The associated synthetic coordinates (δ,ξ,Δ) endowed with units of (THz, μm−1, THz) for these five sample are (0,0,0),
(−3.8,0,0), (−5.7,0,0), (3.8,0,0), and (5.8,0,0) as labelled in e and f. The open circles and right-pointing triangles also represent experimental band
edge frequencies of another two samples with (m,n)= (4,6)and (6,4), and the thickness of their defective units are (dA,dB)= (3,0), corresponding to
(δ,ξ,Δ)= (−3.8,0, −4.1) and (3.8,0, −4.1), respectively. Solid lines highlight the Δ= 0 plane. e, f Eigenfrequency as a function of δ at ξ= 0 and Δ= 0
when (e) kx= 0μm−1 and f kx= 6μm−1. Solid lines are calculated by the effective dimerized model, and open markers are experimental results with their
samples labelled on the top.
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equal to ±2 imply the existence of intriguing topological end
modes. Such end modes originate from each of the two WPs
guaranteed by the bulk-edge correspondence, known as one of
the most significant experimental properties of WPs. In our
synthetic space, these topologically protected modes can be
separated into two groups due to TM and TE polarized super-
modes, respectively, each of which is supposed to be engineered
independently under different polarizations. In what follows we
demonstrate their existence in our optical superlattice system
when truncated in space. The configurations could be generalized
as ps[pm/2DAqnDBpm/2]5ps, which are composed of 5 unit dimes
with an open condition along z-axis and are extended by s
additional unit cells of at both termini to avoid interacting with
external environment. Figure 4a sketches a specific structure with
(m,n,s)= (4,6,5) and dA ≠ dB such that δ < 0 and Δ ≠ 0, meeting

the condition of supporting two nondegenerate end states
(See “Methods”). The substrate is made from SiO2 at the bottom
of the structure. We describe the incident light from the front
(bottom) as F (B). Topological end modes should come in pairs
regardless of the value of Δ, but it is Δ that determines locations
of these two end states in synthetic space, as experimentally
demonstrated in Fig. 4b, c. To make it clear, in Fig. 4d we depict
eigenfrequency surfaces of WPs and corresponding topological
ends modes in the δ− Δ space with kx= 6 μm−1 for both TM
and TE polarized super-modes. In Fig. 4d, the end modes on
purple sheets are located at the front side of truncated chains with
~ω ¼ ± ~τ þ Δ and can only be excited by F, whereas those on
orange sheets are localized at the end of the chains with ~ω ¼
± ~τ � Δ excited only by B, in which the first plus (minus) sign
applies to TM (TE) polarized end modes. Notably, the end states

Fig. 4 Topological end states in truncated optical superlattices. a The upper panel: the schematic picture of the truncated optical superlattice
p5[p2DAq6DBp2]5p5 with (dA,dB)= (3,0) and (δ,ξ,Δ)= (−3.8,0, −4.1). The lower panel: distributions of the electric field norm of topological end modes 1–4.
b Measured reflection spectra of the sample depicted in a for transverse-magnetic (TM) and transverse-electric (TE) polarizations excited by both F and B
oblique incident light with an angle of 30°. The four dips marked with black arrows correspond to topological end states 1–4. c Measured reflection spectra
of the sample p5[p2DAq6DBp2]5p5 with (dA,dB)= (0,0) ((δ,ξ,Δ)= (−3.8,0,0)) for TM and TE polarizations excited by F incident light with an angle of 30°.
d Eigenfrequency surfaces showing two WPs (transparent blue cones) and topological ends modes (purple and orange sheets) in the δ−Δ space with
kx= 6μm−1 for both TM and TE polarizations. The experimental dips in b and c are labelled by open circles and upward-pointing triangles, respectively. For
display purpose, the vertical distance between two Weyl points is deliberately magnified. e Frequencies of topological end modes for TM and TE
polarizations as a function of kx for the sample used in a and b. The solid lines are results of numerical calculations, the open markers are obtained directly
from experimental data, and experimental uncertainties are shown by error bars. The topological end states 1–4 shown in b are encircled by a black dashed
ellipse. f, g Eigenfrequencies of topological end states for TM and TE polarizations in the f Δ=−4.1 THz and g Δ= 0 THz plane. The black regions in f and
g refer to the bands of super-modes and the dashed lines in d, f, and g correspond to the calculated dispersion of topological end modes.
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belonging to the intersections of the two sheets connect to the
WPs, sharing the same mathematical origin as that of the Fermi-
arc surface states1,3,6 in Weyl semimetals. They are plotted by
magenta dotted lines, with Δ= 0 and ~ω ¼ ± ~τ in synthetic space,
and hence they can be excited by either F or B. It is, however,
indispensable to underscore here that the Fermi-arc links two
WPs in a periodically arranged system while the Fermi-arc-like
end modes in our system connect a WP to the boundary of
synthetic space explained by the existence of the net topological
charge.

Figure 4b presents the measured reflection spectra of the
sample illustrated in Fig. 4a for TM and TE polarizations excited
by both F and B with an oblique incident angle of 30°, where we
observe four dips inside the TIM gaps. These modes are labelled
as 1–4, whose distributions of the electric field norm are exhibited
in Fig. 4a. It is worth noting that, for both TM and TE polarized
super-modes, the modes excited by F (1 and 3) and B (2 and 4)
are located at the front and bottom of the sample, respectively.
We then investigate another sample with (m,n,s)= (4,6,5) and
dA= dB, characterized by δ < 0 and Δ= 0. Its measured reflection
spectra achieved from F with an incident angle of 30° for TM and
TE polarizations are exhibited in Fig. 4c, where each dip in the
gap of super-modes is attributed to two degenerate end modes
localized at both termini. In Fig. 4b, c, transparent gray regions
correspond to the common bulk band gaps of PC-p and PC-q,
and the gray regions with extra inclined downward and upward
lines stands for the bands of TM and TE polarized super-modes,
respectively. Due to the fact that the introduction of the nonzero
kx leads to a removal of the degeneracy between TM and TE
polarized end modes, each mode divides into two states with the
splitting increasing rapidly as kx increases, as revealed in Fig. 4e
for the sample described in Fig. 4a. In addition, Fig. 4f, g provide
projected dispersion cones within different Δ planes. The
eigenfrequency surfaces of topological end modes are projected
as straight dashed line and the locations of end modes mentioned
above are plotted in corresponding planes. Therefore, the great
conformance between calculations and experiments further
verifies our argument of topological end modes based on the
established optical superlattice system.

Discussion
As a burgeoning field of topological physics, the study of topo-
logical photonics has captured huge attention in recent years49. A
wide range of photonic systems have been devoted to this field,
such as waveguide arrays50,51, coupled silicon ring resonators52,
and polariton superstructures53, achieving remarkable accom-
plishments in various branches. In particular, the importance of
3-D gapless states such as Weyl and multi-Weyl points is a strong
driver of current research in topological photonics. The concept
of synthetic dimensions, though initially introduced to explore
the higher dimensional physics by parametric coupling between
internal modes or by dynamically scanning over the parameter
space, has been extended and developing rapidly in the realm of
Weyl or Weyl-related physics26,27,30,34,36,37. Relevant photonic
systems include photonic crystals26, 1-D circuit-QED lattices36,
and 2-D ring resonator lattices37. The essential phenomena owing
to these gapless phases such as bulk-edge correspondence should
be viewed in synthetic space accordingly, but still can reflect the
topological characters (e.g., Chern number) of these points, just
like what we have done with synthetic dimensions in this work.

Thanks to the availability and adjustability of our 1-D super-
lattice system, we can investigate fundamental topological fea-
tures of the CDP—a novel kind of multi-Weyl points—in the
photonic context by the aid of synthetic dimensions. We
demonstrate the highly tunable on-site resonance frequency of

each TIM and the controlled periodic coupling of nearest-
neighbor TIMs within our superlattices. The TIMs play the role of
photonic orbitals, and their hybridizations form topological
super-modes, whose band structures can be ingeniously engi-
neered to create CDPs in synthetic space with the pseudospin
degree originating from the polarized property of light. It is, for
the first time, to realize CDPs in the visible region. Without the
help of synthetic dimensions, as well as the utilization of pseu-
dospins which fundamentally change the system’s behaviors, the
creation of CDPs is more demanding, possible only in the
infrared range restrained by obstacles to the fabrication of com-
plex structures. Furthermore, the CDP can be artificially split into
two spawned WPs with the same Chern number by introducing
nonzero horizontal wave vector that removes the degeneracy
between TM and TE polarized super-modes. Such amazing pro-
cess has not been obtained in previous studies, thus opening a
new frontier to explore emergent phenomena of topological
physics. In addition, the approach of experimental detection we
render here is facile and obtainable by measuring transmission
and reflection spectra to examine band structures of super-modes
unambiguously. It is noteworthy that the bulk-edge correspon-
dence displays itself as topological end modes exclusive to the
CDP, residing at boundaries of truncated superlattices, which can
be manipulated with ease and hence be applied for local field
enhancement in various realms45–47.

Although our system was engineered to explore CDPs in the
optical region at first, it offers a versatile approach to investigating
other prevailing topological physics. Notably, the CDPs in our
system are, in essence, a sort of secondary topological phases. It
arises due to the fact that each TIM itself is of topological origin,
and hence the CDPs could be treated as a consequence of cou-
pling among multiple TIMs. Nowadays, the secondary topological
effects arouse great interest and curiosity, and various systems
have been devoted to this novel field54–56. Our work thus presents
the core concepts similar to these systems, and exhibits intriguing
secondary topological signatures, as shown in Fig. 4 where
topological end states lying in the tight-binding gaps of TIMs.
Another hot topic on topological photonics is the exploration of
non-Hermitian effects51,57–64, which highlights itself as the
appearance of exceptional points57,59, rings51, and surfaces64. By
harnessing absorptive losses, our system has the potential to
control imaginary parts of the TIMs’ eigenfrequencies (See details
in Supplementary Note 7), and then can be exploited to realize
exceptional points and associated non-Hermitian effects. In
addition, we may research on nonlinear topological phenomena
by utilizing materials with intensity-dependent refractive indexes,
which are currently a hotspot and can hold great promise for
applications65,66.

Methods
Tight-binding analysis of coupling effects. In this section we provide the
approach we used to obtain normalized coupling strength between nearest-
neighbor TIMs. Since the TIMs are highly localized modes that decay rapidly into
bulks, we can apply the tight-binding method to analyze such coupling effects. For
the cases illustrated in Fig. 2a, the Hamiltonian can be written as the following
matrix:

H ¼ ω0 t

t ω0

� �
ð4Þ

where ω0 is the eigenvalue of either TIM and t corresponds to the
coupling term.

Diagonalizing the Hamiltonian matrix (Eq. 4), we achieved two eigenstates with
eigenfrequencies and wave functions given by:

ω ¼ ωs � ω0 þ t; φSj i ¼
ffiffi
2

p
2 ϕ1
�� �þ ϕ2

�� �	 

ωAS � ω0 � t; φASj i ¼

ffiffi
2

p
2 ϕ1
�� �� ϕ2

�� �	 

(

ð5Þ

Here, ϕ1
�� �

and ϕ2
�� �

are the wave functions of the TIMs trapped by two identical
defective units. φSj i and φASj i are the emergent symmetric (S) and antisymmetric
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(AS) coupling modes as described in the text. As a result, the normalized coupling
strength can be written by definition as:

J � t
ω0

¼ ωS � ωAS

2ω0
: ð6Þ

To calculate the value of J as a function of N for both p-type and q-type PCs, as
well as the in-plane wave vector kx for both TM and TE polarizations, a series of
numerical simulations were performed by means of COMSOL Multiphysics via the
optic module. The results are shown in Fig. 2c, d, and the distributions of electric
field profiles for some specific configurations are exhibited in Supplementary Fig. 1.

In the experimental measurements, we harnessed the transmission spectra of
each sample under normal or oblique incidence, where two transmission peaks
attribute to two coupling TIMs (S and AS), and hence found the value of J. The
outcomes are present in Fig. 2, matching well with the tight-binding analysis.
During this procedure we treated kx as a constant with certain incident angle, since
the range of working frequency is so small that kx is little influenced by the
frequency variation. Strictly speaking, this treatment could be another reason
(additional to the fabrication imperfection and experimental errors) that the
measurements are slightly deviated from the simulations on frequencies, but it has
minimal impact on the value of J. Therefore, error bars used in Fig. 2c, d only result
from the broadening transmission peaks owing to experimental uncertainties.

Deduction of the Hamiltonian for the CDP. The Hamiltonian (Eq. 2) can be
expressed as H(δ,ξ,Δ)= (H↑,0; 0, H↓) with Hs¼";# � ~ds¼";# � σ when kx= 0 μm−1.
We argued that Hs for super-modes with respective TM and TE polarizations
exhibit the same standard Weyl Hamiltonian form near the degenerate point (δ,ξ,
Δ)= (0,0,0). Here, we elaborate on the deductive process of such Weyl Hamilto-
nian, and hence acquire the Hamiltonian for the CDP. Since
~ds
� �

x
¼ � Js þ δsð Þ � g Js � δsð Þ cos ξΛ, ~ds

� �
y
¼ �g Js � δsð Þ sin ξΛ, and ~ds

� �
z
¼ Δs

within Hs, in which δ≡ δ↑= δ↓ and Δ≡ Δ↑= Δ↓ given kx= 0μm−1. Note that δ= 0
indicates m= n in the unit dimer, resulting in g=−1. Thereby, keeping only the
terms at the lowest order of δ, ξ, and Δ around the degenerate point (0,0,0),
~ds
� �

x
¼ � Js þ δð Þ þ Js � δð Þ ¼ �2δ, ~ds

� �
y
¼ Js � δð Þ � ξΛ ¼ �ΛJsξ and

~ds
� �

z
¼ Δ, and thus Hs can be written in the basis of Pauli matrices as:

Hs ¼ �2δσx þ ΛJsξσy þ Δσz ð7Þ
which exactly corresponds to a WP in synthetic space. Furthermore, the TM

and TE polarized super-modes are degenerate when kx= 0 μm−1, so that the four-
band Hamiltonian (Eq. 2) near the degenerate point (δ,ξ,Δ)= (0,0,0) reveals an
overlapping of two identical WPs, namely, the CDP.

Eigenfrequency surfaces of topological end modes. The bulk-edge correspon-
dence of spawned WPs formed in our synthetic space is guaranteed by the topo-
logically nontrivial property of the truncated superlattice. Such kind of superlattice
must meet the condition that the absolute value of the coupling strength within a
unit dimer is less than that between two adjacent dimers, no matter what value Δ
takes. Consequently, if both m and n are even numbers such that Js < 0, δ must be
negative and the corresponding eigenfrequency surfaces of topological end modes
are plotted in Fig. 4d. However, if m and n are simultaneously odd, Js > 0 and δ
must be positive, making the eigenfrequency surfaces of topological end modes
become the reflection of those shown in Fig. 4d in the plane δ= 0.

Data availability
The data that support the findings of this study are available from the corresponding
author on reasonable request.
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