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The topological edge state (TES) in a one-dimensional optical lattice has exhibited robust field
localization or waveguiding against the structural perturbations that would give rise to fault-tolerant
photonic integrations. However, the zero mode as a kind of TES usually deviates from the exact zero-
energy state in a finite Hermitian lattice due to the coupling between these edge states, which inevitably
weaken the topological protection. Here, we first show such a breakup of zero modes in finite Su-Schriffer-
Heeger optical lattices and then reveal their recovery by introducing non-Hermitian degeneracies with
parity-time (PT) symmetry. We carry out experiments in a finite silicon waveguide lattice, where a passive-
PT symmetry was implemented with carefully controlled lossy silicon waveguides. The experimental
results are fully compatible with the theoretical prediction. Our results show that the topological property of
an open system can be tuned by non-Hermitian lattice engineering, which offers a route to enhance the
topological protection in a finite system.
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Parity-time (PT) symmetric systems with non-Hermitian
Hamiltonians have received increasing attention over the
past decade [1–12]. On crossing the transition point [i.e.,
the exceptional point (EP) [2,3] ], the spectrum is no longer
purely real due to spontaneous PT-symmetry breaking.
Among various PT-symmetric systems, PT photonics with
intentionally modulated gain and loss has become an
attractive topic [4,5], which has witnessed a series of novel
optical phenomena and functionalities [6–12]. On the other
hand, topological photonics has sparked a great deal of
interest with intriguing phenomena associated with the
topological edge states (TESs) [13–15]. The dimensionless
edge state with its eigenenergy pinned at the middle of a
gapped band structure is referred to as the zero mode [16],
which is expected to work in fault-tolerant waveguiding
and quantum computation [17,18]. In fact, topological
systems are usually of finite system size, which will
weaken the topological protection. For example, zero
modes may deviate from the exact-zero energy in a finite
Hermitian lattice due to the coupling effect [16], which
inevitably leads to weakness of the intriguing topologically
protected characteristics. It is necessary to strengthen these
zero modes in a finite topological system. Recently, the
topological properties of non-Hermitian systems have been
studied [19–24] and TESs in non-Hermitian systems are
demonstrated [25,26]. Non-Hermitian properties have been

proven to give rise to a lot of useful aspects in topological
phenomena, such as selective enhancement of topological
states [27], non-Hermitian-induced topological protection
[28,29], topological insulator lasers [30–33], etc. They
provide us with the foundation to investigate a variety of
topological phenomena in open systems and a possible
route for the recovery of zero modes by non-Hermiticity in
finite systems.
In this Letter, we clearly demonstrate both the breakup

and recovery of zero modes in a finite 1D topological
optical system, where the recovery of zero modes was
realized by introducing the loss to form a non-Hermitian
topological configuration. We systematically investigated
the interplay of PT phases and edge states in the non-
Hermitian Su-Schriffer-Heeger (SSH) model [34]. On
crossing the EPs, the edge states are driven to undergo a
transition from a trivial PT-symmetric edge state to a
topological broken-PT one. The experimental results in
silicon waveguide lattices with controlled losses are in
good agreement with theoretical results. Our study reveals
that the topological property of an open system can be
tuned by non-Hermitian parameters and implies more
interesting physics and photonic applications in PT and
topological systems.
We would like to start from a general 1D non-Hermitian

SSH model defined by a finite coupled optical waveguide
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lattice. Figure 1(a) schematically shows the 1D optical
lattice withN coupled waveguides, where c1 and c2 are two
coupling coefficients of the nearest neighbors, and βG and
βL (where βG ¼ β0 − iγ, βL ¼ β0 þ iγ, and γ is gain or loss
strength) are the on site propagation constants (i.e., on site
energy) in the gain and lossy waveguides, respectively.
Following the coupled-mode theory (CMT) in the tight-
binding approximation, the optical field propagation within
the waveguide lattice can be described by

−i ∂
∂zφn ¼ βLφn þ c2φn−1 þ c1φnþ1; n ¼ 1; 3;…;

−i ∂
∂zφn ¼ βGφn þ c1φn−1 þ c2φnþ1; n ¼ 2; 4;…;

ð1Þ

where φn denotes the optical field in the nth waveguide.
The non-Hermitian bulk Hamiltonian is [29]

HðkÞ ¼
�

iγ ρ∗ðkÞ
ρðkÞ −iγ

�
; ð2Þ

where ρðkÞ ¼ c1 þ c2 expðikaÞ, k is the quasimomentum
in the Brillouin zone, and a is the period.
We first consider the Hermitian cases (γ ¼ 0), where the

SSH Hamiltonian HðkÞ possesses a chiral symmetry

[σzHðkÞσz ¼ −HðkÞ, where σi refers to Pauli matrices],
and the energy spectrum is symmetric around the zero
energy [35]. According to Eqs. (1) and (2), one may obtain
the nontrivial TESs in the case of c2=c1 > 1, which is also
indicated by the winding number W [36,37] (W ¼ 1 when
c2 > c1 and W ¼ 0 when c2 < c1). Figure 1(b) shows the
mode diagram of a lattice of 200 waveguides with W ¼ 1
indicating a near infinite system. There are two zero-energy
states (blue and red circles) that appear in the midgap
between two bands. As the system size decreases (e.g.,
N ¼ 24 and 12), two zero modes will deviate from the
exact-zero energy. Figure 1(c) shows the mode constants of
two edge states (βA and βB) plotted as a function of c2=c1. It
is clear that, in a case of c2=c1 > 1, the two edge modes
will not preserve exact-zero modes asN decreases. It means
that as the optical lattice undergoes from an infinite to finite
system, the exact-zero modes will break into nonzero or
near-zero modes. We further compare the field distributions
of exact- and near-zero modes, with the results shown in
Fig. 1(e). Different from single-boundary localization of
zero modes, the near-zero modes have a localized field
at both boundaries in symmetric or asymmetric manners
due to boundary coupling in such a finite system [16,28].
Indeed, these near-zero edge states with two-boundary
localization have been demonstrated in the finite zigzag
chains of plasmonic and dielectric nanoparticles [38,39].
According to above results and analyses, it is necessary to

exploit a route to preserve the exact-zero modes in practical
finite systems. Here, we would like to consider the non-
Hermitian optical system with gain and loss, where the bulk
Hamiltonian HðkÞ is of PT symmetry ½σxHðkÞ�σx ¼ HðkÞ�
and pseudo-anti-Hermiticity ½σzHðkÞ†σz ¼ −HðkÞ�. The
latter symmetry gives rise to pairwise eigenvalues βðkÞ
and −β�ðkÞ and can lead to nontrivial topology [22,28],
which can be accurately probed by the global Berry phase
[19,22,28,29]. In our case, it corresponds to the summation of
the complex Berry phase in both lower and upper bands. The
Berry phase in each band can be calculated by Φm

B ¼H
k idkhψmðkÞj∂=∂kjψmðkÞi, which leads toΦm

B ¼ ðΦ0=2Þ�
1
2

H
ϕk
cos γkdϕk [29].Here, k is theBlochwave numberwithin

the first Brillouin zone, ψm is the eigenstate (m is the band
number, and m ¼ 1, 2), and γk ¼ arctanðjρðkÞj=iγÞ,
ϕk ¼ arg½ρðkÞ�. It clearly manifests the intrinsic Berry phase
in the Hermitian case (i.e., Φ0=2) and the non-Hermitian-
induced geometric phase. Note that the Berry phase in the
Hermitian case [Φ0

2
¼ H

k idkhψ0mðkÞj∂=∂kjψ0mðkÞi, where
ψ0m is the eigenstate in the Hermitian system] equals zero
when c1 > c2 and π when c1 < c2. The global Berry phase
remains quantized independent of on site non-Hermitian
modulation in our system (i.e., Φ1

B þΦ2
B ¼ Φ0), revealing

the same topological nature depending on the dimerization of
the SSH model. Figures 1(d) and 1(f) show the real and
imaginary parts of mode constants of two edge states [βA and
βB], respectively, as the function of c2=c1 in a finite system
(N ¼ 12) with different gain or loss strength (γ). One can see

FIG. 1. Breakup and recovery of zero modes by non-Hermitian
modulation. (a) Schematics of the 1D finite non-Hermitian SSH
model with N waveguides, where red and blue colors indicate the
gain and loss, respectively. (b) Band structure with N ¼ 200,
c1 ¼ 1, c2=c1 ¼ 3, and W ¼ 1. Gray areas indicate the bulk
bands. (c) βA and βB as a function of c2=c1 in the Hermitian cases
with different Nðc1 ¼ 1Þ. The red region represents the topo-
logically nontrivial phase and the blue region is the trivial phase.
The real (d) and imaginary parts (f) of βA and βB as a function of
c2=c1 in non-Hermitian cases with different γ (c1 ¼ 1, N ¼ 12).
(e) The eigenmode profiles of exact-zero modes (left) and near-
zero modes (right).
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that the split modes tend tomerge to the exact-zeromodes for
the real part as γ increases, which finally reach the point of
c2=c1 ¼ 1 when γ=c1 ¼ 0.24. It indicates that those split
near-zero modes are fully recovered by increasing
the gain (loss) strength in such a non-Hermitian system
with finite size. Correspondingly, the imaginary part splits,
indicating the broken-PT symmetry.
In order to clearly demonstrate the recovery of zero

modes, 2D diagrams of jReðβA − βBÞj and jImðβA − βBÞj
are plotted as functions of the waveguide amount (N) and
normalized gain or loss strength (γ=c1) with c2=c1 ¼ 2 in
Figs. 2(a) and 2(b). A white guiding curve shows the
boundary defined by exceptional points, as termed the EP
boundary. As the N and γ=c1 increase, crossing this EP
boundary, we may find jReðβA − βBÞj gets to zero and
jImðβA − βBÞj breaks to nonzero values. This implies that

one can recover the exact-zero modes either by increasing
the system size (N) or the gain or loss strength (γ).
Therefore, tuning γ is a good route to manipulate the zero
modes in a defined finite system. For instance, we analyze
the mode properties of TESs in the case of N ¼ 12 with
different γ values (γ=c1 ¼ 0, 0.012, 0.023, 0.05) marked as
the black, blue, red, and magenta dots in Fig. 2(a). Two
edge states in the Hermitian (black curve) and non-
Hermitian cases with exact-PT symmetry (blue curve)
have purely real mode constants that are slightly detuned
from zero [see Fig. 2(c)], which corresponds to the
localized optical intensities on both boundaries guaranteed
by PT symmetry [see Fig. 2(e)]. As γ increases, the two
edge states in their real energy spectra tend to be degen-
erated to an exact-zero state and their imaginary parts tend
to split through the EP. This mode evolution is well
displayed in the inset of Fig. 2(d), where the red and blue
curves are for the real and imaginary parts (βA, βB),
respectively. The recovered zero-energy states with a pure
imaginary mode constant (magenta curves) localize on one
side depending either on lossy or gain modes due to PT-
symmetry breaking [see Fig. 2(e)]. Thus, the dissipative
lossy mode finally sinks, and the other gain one rises [see
the field propagations in Fig. 2(f)]. Detailed mode analyses
on these TESs are provided in the Supplemental Material
[40]. We further theoretically analyzed the robustness of the
near- and exact-zero modes against structural fluctuations,
which shows enhanced topological protection of recovered
zero modes. It is further confirmed by our later experiments
in a passive-PT system [40].
Afterwards, we carried out full-wave simulations

(COMSOL MULTIPHYSICS 5.3) and experiments in a silicon
waveguide platform based on passive-PT symmetry
[3,7,29,42]. Here, we fix the total number of waveguides
toN ¼ 12, and the dissipative element consists of an array of
lossy metal (i.e., chrome) stripes deposited on top of every
other silicon waveguide, as shown in Fig. 3(a). The dynamic
evolution of TESs in the optical lattice can be drastically
altered by the synthetic dissipative PT-symmetric potential.
The structural parameters such as waveguide width (w),
height (h), and thegaps (g1 andg2) are optimized asw ¼ 400,
h ¼ 220, g1 ¼ 200, and g2 ¼ 120 nm. Based on this design,
only one fundamental mode is supported in the silicon
waveguide at λ ¼ 1550 nm with a propagation constant
β0 ¼ 2.1601 k0 (k0 is the free space k vector), and the
waveguides have a coupling coefficient c1 ¼ 0.0811 and
c2 ¼ 0.1508 μm−1, respectively. The EP is derived at
2γ ¼ 0.0053 μm−1, corresponding to 53-nm-wide and
4-nm-thick chrome (Cr) layer, where the loss is engineered
by thewidth of the Cr strip (see SupplementalMaterial [40]).
Figure 3(b) shows the evolution of the propagation constant
of modes A andBwith respect to loss 2γ. Here, we designed
two lattices with 50- and 100-nm width (both in 4-nm
thickness) Cr layers for the exact-PT and broken-PT phases,
corresponding to 2γ ¼ 0.005 and 0.010 μm−1, respectively

FIG. 2. Edge mode properties in the non-Hermitian SSHmodel.
(a) jReðβA − βBÞj and (b) jImðβA − βBÞj as functions of N and
γ=c1 with c2=c1 ¼ 2 (here c1 ¼ 1). The black, blue, red, and
magenta dots mark the edge states shown in (c)–(e). (c) The real
part of eigenvalues as functions of mode number and γ=c1, where
the gap modes A and B are particularly shown in the zoom-in
inset figure. (d) The corresponding imaginary eigenvalue spectra,
where the inset depicts the evolutions of real (red curves) and
imaginary (blue curves) parts of modes A and B with respect to
γ=c1. (e) The mode profiles of the five edge states, in which two
recovered zero modes (gain and lossy) are both presented.
(f) CMT calculated field propagations of exact-PT-symmetric
mode (the blue case with γ=c1 ¼ 0.012) and two zero modes in
the broken-PT phase (the magenta case with γ=c1 ¼ 0.05).
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[see blue and red dots inFig. 3(b)]. It is clear that in the case of
2γ ¼ 0.005 μm−1 the normalized propagation constants of
modes A and B are divergent from zero [ðβ − β0Þ=k0 ¼
�0.0002] resulting in βA=k0 ¼ 2.1603 and βB=k0 ¼ 2.1599
(here β0=k0 ¼ 2.1601). Whereas they merge together to the
exact-zeromode (βA ¼ βB ¼ β0) as 2γ increases over the EP.
To confirm this, the field propagations of both cases were
simulatedwith the excitation states exactly retrieved from the
theoretical calculations [Fig. 3(b)]. Figure 3(c) displays the
field propagations of modes A and B in the exact-PT phase,
which show a slight difference in phase symmetry and
evolution corresponding to their different mode constants,
and the unchanged two-boundary localizations in propaga-
tion definitely indicate their eigenmode property. As for the
broken-PT case [see Fig. 3(d)], both modes show their one-
sided field localizations with the same phase evolutions,
indicating the same mode constant of the recovered exact-
zeromode. Note thatmodeA is lossywith apparent decaying
in intensity, while the other “gain”mode (mode B) does not.
The experimental samples were fabricated by E-beam

lithography and an inductively coupled plasma etching
process, followed by a second-step E-beam lithography
with careful alignment and lift-off process to deposit the Cr
stripes (see Supplemental Material [40]), which include the

waveguide array, an input grating coupler, and extended
output ports. The scanning electron microscopy (SEM)
images of the fabricated structures are shown in Figs. 4(a)–
4(c). It should be mentioned that there are two branch
waveguides at the input ends, which were designed to
prepare the eigenmodes of the TES [40]. In experiments,
the light was input into the waveguide lattice by focusing
the laser (λ ¼ 1550 nm) via an input grating coupler. The
transmitted signals can be collected from the scattered light
from the extended output ports. The coupling-in and
coupling-out processes were imaged by a near-infrared
CCD camera (Xenics Xeva 1083). Figure 4(d) displays the
optical propagations in experiments. The detailed output
results of two kinds of samples captured by CCD are
displayed in Figs. 4(e) and 4(f) (top panels). Moreover, we
extracted the normalized intensity displayed in the bar
diagrams [red bars, see the bottom panels in Figs. 4(e) and
4(f), respectively], which agree extremely well with
the simulation results (blue bars). In the experiment of
the exact-PT phase, the two-sided input only excites the
near-symmetric mode of the two-sided edge states [i.e.,
mode B in Fig. 3(c)]. From Fig. 4(e), it is evident that this
sample supports two-boundary TESs with PT symmetry,

FIG. 3. Theoretical model and simulation results. (a) Schematic
of the non-Hermitian optical lattice consisting of a dissipative PT
silicon waveguide array, the additional chrome (Cr) layer on top
of every other silicon waveguide to introduce periodic optical loss
modulation. (b) Theoretical mode spectrum of the normalized
mode constant as functions of the loss strength (2γ), where β�0 ¼
β0 þ iγ is the averaged propagation constant in the passive
system. Two particular cases of 2γ ¼ 0.005 μm−1 (exact-PT
phase) and 2γ ¼ 0.010 μm−1 (broken-PT phase) are marked
corresponding to the simulation and experimental parameters.
Simulated field evolutions of the edge states in (c) exact-PT and
(d) broken-PT phases with exactly prepared input excitation
states.

FIG. 4. Experimental results. (a)–(c) SEM image and enlarged
regions of the fabricated structure. (d) CCD recorded optical
propagation from input to output through the waveguide lattice.
(e) Experimentally detected output intensities (top) and normal-
ized intensity profiles (bottom) of near-zero mode B. (f) Corre-
sponding results for the recovered exact-zero mode B (gain
mode), where another lossy mode A decays off in propagation.
Scale bar ¼ 10 μm.

PHYSICAL REVIEW LETTERS 123, 165701 (2019)

165701-4



though the output intensities of the two boundaries are not
exactly the same. This small deviation would mainly
account for the imperfections of the eigenmode preparation
and fabrications. As for the recovered exact-zero mode, it
should be the one-sided eigenmode with degenerated mode
constant. Here, our experiments still use two-sided exci-
tation in order to get a direct comparison with the case of
near-zero modes. Indeed, this two-sided excitation corre-
sponds to two superposed eigenmodes, one is lossy (mode
A) and the other is gain (mode B), as indicated in Fig. 3(d).
Because of the decaying mode A, we eventually observed
the gain mode B in experiments [Fig. 4(f)], confirming the
recovered zero mode in broken-PT symmetry. These
experimental and simulation results are in good agreement,
which well prove our theoretical predictions. According to
more experimental results, we find that the exact-PT-
symmetric modes are more sensitive to the structural
perturbations because they are not exact-zero modes, while
the recovered zero modes exhibit more robustness (see
Supplemental Material [40]).
Now, we have confirmed that in a finite topological

system, the zero modes of edge states will break due to the
coupling between them. More interestingly, these modes
can be further recovered by non-Hermitian degeneracies
through loss modulation. This recovery can be intuitively
explained in that these gain or loss modulations in the
waveguide lattice can indeed reduce the coupling of
the boundary modes. In addition, we further demonstrated
the different field evolutions of the near-zero and exact-zero
modes with single-side excitation [40]. It turns out that the
former exhibits a boundary coupling phenomena (i.e., field
energy transfer between the two boundaries), while the
latter (the exact-zero mode) keeps good localization along
the preferred boundary.
In conclusion, we have exploited the breakup and

recovery of photonic zero modes in the SSH model by
tuning the loss to form a non-Hermitian configuration. The
experimental results on finite silicon waveguides with
controlled loss are fully consistent with the theoretical
prediction. Since many realistic topological systems have
finite size, their topological edge states should not be the
exact ones and will be degraded by structural imperfec-
tions. The recovered zero modes by introducing the non-
Hermitian item exhibit enhanced topological protection
compared with the Hermitian cases. Our results show that
the topological property can be manipulated by non-
Hermitian parameters, which should inspire more insightful
explorations in topological and PT photonics.
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