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Manipulation of tripartite frequency correlation under extended phase matchings
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We investigate how to manipulate the tripartite frequency correlation of triplets which are generated from
cascaded spontaneous parametric down-conversions. A monolithic quadratic nonlinear crystal is designed to
contain two segments of periodically poled lithium niobate waveguide as nonlinear mediums to produce cascaded
photon pairs both under phase-matching and group-velocity-matching conditions. By choosing proper pump
bandwidth and crystal length, the tripartite frequency will show a full correlation, partial correlation, or no
correlation, corresponding an inseparable triplet, separable one photon and biphoton, or three separable photons,
respectively. This opens up a way to manipulate the tripartite correlation, which is important for understanding
quantum fundamentals and also can supply key elements for developing new quantum technologies.
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I. INTRODUCTION

Quantum correlations between individual particles lie at
the heart of quantum mechanics and supply the basis to
build various quantum technologies [1]. To construct quantum
correlation between two particles, one of the most com-
mon methods is to adopt the spontaneous parametric down-
conversion (SPDC) process during which a photon from a
pump laser beam can spontaneously be converted into a pair
of signal-idler photons when the pump photon is incident into
a nonlinear optical medium. The conservation of the total
energy and momentum, known as phase matching, leads to
strong correlations between the generated photon pair which
can be used to produce quantum entanglement over a variety of
degrees of freedom and find applications for different quantum
technologies. Taking the two-photon energy-time correlation
as the example, two photons will show anticorrelation, positive
correlation, or no correlation when the SPDC is properly de-
signed. Energy anticorrelated photons can be used to alleviate
the deleterious effects of dispersion in quantum cryptography
[2] and the potential damage to sensitive biological samples
[3]. Frequency-uncorrelated photons are desired because they
provide a heralded source of pure-state photons [4–6], which
is an important tool in quantum information processing. Quan-
tum enhanced position and clock synchronization techniques
require frequency-correlated photon pairs [7–9] which can
be generated from pulsed pump laser under extended phase-
matching (EPM) conditions.

Quantum correlation between three or more particles will
show complex yet interesting characteristics. Many efforts
have been concentrated on generating multipartite entangle-
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ment for its wide variety of applications in quantum com-
putation [10,11] and communication networks [12,13]. A
popular and rapidly developing method to prepare multiphoton
entanglement is based on the indistinguishable yet indepen-
dent photon pairs generated from SPDC when pumped by
a femtosecond laser, but in a postselected way [14,15]. This
method has been experimentally approved as an reliable and
valuable source for prompting the practical use of quantum
computing [16,17] or demonstration of quantum supremacy
by boson sampling [18–21]. A different strategy for preparing
multiphoton entanglement without postselection is based on
the cascaded SPDCs. One of the photons from the first SPDC
acts as the pump photon and is converted into a pair of photon
in a cascaded way. The remaining photon from the first SPDC
and the cascaded photon pair from the second SPDC constitute
a triplet. The photon triplet originates from a single-pump
photon, so the energy and momentum obey strong correlations,
unlike the aforementioned independent pairs. Until 2010, the
first triplet was experimental observed by Hübel et al. [22],
although it was proposed in 1990 [23]. The same group also
verified the tripartite photons share strong spectral correlation
and exhibit genuine entanglement in the frequency-time regime
[24,25] as well as in the polarization degree of freedom
[26]. Their experimental results have proven the feasibility
of generating heralded Bell states with high visibility and
fidelity, but without the need for postselection. Based on the
idea of cascaded SPDC, Krapick et al. designed and fabricated
a monolithic photon-triplet source in a second-order nonlinear
waveguide chip [27], and their results make crucial progress
toward a robust, scalable, and miniaturized quantum technol-
ogy. Unlike the cascaded second-order nonlinear processes,
photon triplets generated by third-order nonlinearity [28,29]
are derived from a single event in which one pump photon is
annihilated to generate three signal photons.
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FIG. 1. Schematic of the cascaded periodically poled crystal.
Triplets at frequencies ω1, ω2, and ω3 are generated by cascaded SPDC
processes driven by a pump at frequency ωp . �1 and �2 are the poled
periods of the corresponding two segments with lengths L1 and L2,
respectively.

Although the triplet generated by cascaded SPDC has
been observed and the genuine energy-time entanglement
over three photons has been verified, the engineering of
tripartite frequency correlation of the triplet is left undisclosed
and different types of tripartite correlations deserve to be
characterized. In this paper, we design the cascaded SPDC
under EPM conditions to tailor the triplet spectrum, resulting
in a mutable tripartite correlation. Transitions among a full
tripartite correlation, partial correlation, or no correlation are
achieved, corresponding an inseparable triplet, separable one
photon, and biphoton or three separable photons, respectively.
This opens up a way to manipulate the tripartite correla-
tion, which is important for understanding quantum funda-
mentals and stimulating the development of new quantum
technologies.

II. TRIPARTITE STATE AND JOINT SPECTRUM

A. Description of nonlinear medium for cascaded
SPDC in our scheme

In our scheme, the generation of three photons is the
same as in Ref. [22], but we suggest integrating the cascaded
SPDC processes on a monolithic periodically poled crystal
waveguide just like in Ref. [27] to increase the efficiency of
triplet by avoiding the interface loss between two SPDCs.
In periodically poled crystal, quasi-phase-matching (QPM)
ensures the momentum conservation among the pump, signal,
and idler in a flexible way, which has been extensively studied
in quantum optics field to build efficient sources for producing
entanglement because its unique advantages [30–33], such as
higher efficiency over birefringence phase matching (BPM),
enables flexible frequency-tunable and collinear nonlinear pro-
cesses. Here in this work, the single quadratic nonlinear crystal
waveguide contains two poling segments, as Fig. 1 shows.
The lengths (periods) of two segments are L1 and L2 (�1 and
�2), respectively. The modulated nonlinearity susceptibilities
with positive χ and negative −χ are interchanged from one to
another.

A pump photon with central frequency ωp will occasionally
split into a pair of signal-idler photons with frequencies ω1

and ω0 in the first nondegenerate SPDC process. Then this
process is repeated with photon ω0, now serving as the pump
in the second SPDC area, creating simultaneously a pair
of new photons with frequencies ω2 and ω3. The energy
conservation condition must be fulfilled in the two pro-
cesses, i.e., ωp = ω1 + ω0, ω0 = ω2 + ω3, and then we have

ωp = ω1 + ω2 + ω3, which indicate that the total energies
of triplet equal to that of original pump laser. Likewise, the
conservation of momentum which is usually referred to as
phase-matching condition also needs to be satisfied. By period-
ically inverting the nonlinear susceptibility in the two different
segments, we create rectangular quadratic gratings with the
corresponding reciprocal vectors g1 = 2π/�1, g2 = 2π/�2.
We include this in the momentum conservation condition,
which can be expressed as kp = k1 + k0 + g1, k0 = k2 + k3 +
g2. Then we have that kp = k1 + k2 + k3 + g1 + g2. This
indicates that the total momenta of the triplets are conserved.
We restrict our analysis here only collinear, one-dimensional
propagation configurations in the periodically poled crystal
waveguide. A simple method to spatially separate the collinear
photon triplets at the output is by using dichroic mirrors,
because the triplets are generated by nondegenerate SPDC
processes at substantially different frequencies.

B. Derivation of tripartite state

In this subsection, we will formulate the photon triplet
generated by cascaded SPDC. In the interaction picture, the
effective Hamiltonian for one SPDC process in a nonlinear
crystal may be written as

HI = ε0

∫
dV χ (2)E(+)

p E(−)
s E

(−)
i + H.c., (1)

where ε0 is the vacuum permittivity, χ (2) is the second-order
susceptibility of the medium, the integral is taken over the
interaction volume V , and H.c. stands for Hermitian conjugate.
E

(+)
j and E

(−)
j are positive- and negative-frequency compo-

nents of the field operators of the signal and idler, respectively,
expressed as

E
(−)
j =

∫
dωjE

∗(ωj )e−i(kj ·r−ωj t)â
†
(ωj ), (2)

where E(ωj ) = i
√

h̄ωj/4πε0cn
2
(ωj )S, (j = s,i), E(+) =

(E(−))†, and a†(ωj ) is the photon creation operator of
frequency ω at the j th detector and obeys commutation
relation [aj (ω),a†

k(ω′)] = δ(ω − ω′)δj,k . The first SPDC
stage is pumped with a classical field E(+)

p which has the
form

E(+)
p

=
∫

dωpẼ(wp)ei(kp ·r−ωpt). (3)

Consider that the pump, centered at �p, with pulse
bandwidth σ , has a Gaussian spectral envelope Ẽ(ωp) =
E0 exp[−(ωp − �p)2/σ 2]. The total Hamiltonian of the cas-
caded SPDC processes in a monolithic crystal can be written
as

H = H
(1)
I + H

(2)
I = ε0

∫
χ

(2)
1 dV1E

(+)
p E

(−)
0 E

(−)
1

+ ε0

∫
χ

(2)
2 dV2E

(+)
0 E

(−)
2 E

(−)
3 + H.c., (4)

H
(1)
I , H

(2)
I are the Hamiltonian for the first and second SPDC

process, respectively. The unitary evolution of a state vector
from time t ′ to t ′′ in the absence of propagation loss can be
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expressed as

|
〉 = exp

[
1

ih̄

∫ t ′′

t ′
dtHI (t)

]
|0〉 = |0〉 + 1

ih̄

∫ t ′′

t ′
dtHI (t)|0〉

+ 1

2!

(
1

ih̄

)2 ∫
dt1dt2H (t1)H (t2)|0〉 + · · · , (5)

where |0〉 is the vacuum, the tripartite state arising from the
third term of the Taylor series expansions, which can be
written as

|�〉 = C0

∫
dt1dt2dz1dz2E

(+)
0 E

(−)
2 E

(−)
3 E(+)

p E
(−)
1 E

(−)
0 |0〉.

(6)

Then, by substituting Eqs. (2) and (3) into Eq. (6), we obtain

|�〉 = C0

∫
dωpdω0dω1dω2dω3 exp

[
− (ωp − �p)2

σ 2

]

×
∫ L2

0
dz2e

i(k0−k2−k3−g2)z2

∫ 0

−L1

dz1e
i(kp−k0−k1−g1)z1

×
∫

dt2e
−i(ω0−ω2−ω3)t2

∫
dt1e

−i(ωp−ω1−ω0)t1a
†
1a

†
2a

†
3|0〉.

(7)

All constant factors have been lumped into C0 in the above
equations. Considering steady-state output, we may set t ′ =
−∞ and t ′′ = ∞, and then we have∫ ∞

−∞
dt1e

−i(ω0−ω2−ω3)t1 = 2πδ(ω0 − ω2 − ω3),

∫ ∞

−∞
dt2e

−i(ωp−ω1−ω0)t2 = 2πδ(ωp − ω1 − ω0), (8)

which give the energy conservation condition ωp − ω1 − ω2 −
ω3 = 0. Integrating over the finite length of the crystal L1 and
L2 give the longitudinal detuning function, which determines
the natural spectral width of the photon triplets∫

0
−L1

dz1e
−i�k1z1=L1e

−i
�k1L1

2 sin c
�k1L1

2
,∫

L2
0 dz2e

−i�k2z2=L2e
−i

�k2L2
2 sin c

�k2L2

2
, (9)

where �k1 = kp − k0 − k1 − g1 and �k2 = k0 − k2 − k3 −
g2. As a result, the final expression for the state vector is

|�〉 = C1

∫
dω1dω2dω3e

−i
(�k1L1+�k2L2)

2 e
− (ωp−�p )2

σ2

× sinc

(
�k1L1

2

)
sinc

(
�k2L2

2

)
a†

ω1
a†

ω2
a†

ω3
|0〉. (10)

In the case of nondegenerate type-I processes, because of
the existence of the bandwidth, we can define ωj = �j + νj ,
where νj (j = p,1,2,3) is the detuning from the central
frequency �j . Note that �p = �1 + �2 + �3, νp = ν1 +
ν2 + ν3, the wave numbers kj = n(ωj )ω(j )/c, where n(ωj ) is
the effective index of refraction of the crystal waveguide
at frequency ω(j ), and c is the speed of light. Now we
can expand the wave vectors around the central frequencies

up to first order in detuning νj . Then δk can be written
as

δk = kp − ks − ki − g

= (k�p
− k�s

− k�i
− g) +

(
νp

μp

− νs

μs

− νi

μi

)
, (11)

where μj = dωj/dkj are the group velocities of the photons
at central frequencies �j . Suppose the perfect phase-matching
conditions can be satisfied at the central frequency; there-
fore, according to the following QPM conditions for the two
collinear SPDC processes:

k�p
− k�0 − k�1 − g1 = 0,

k�0 − k�2 − k�3 − g2 = 0. (12)

Then the zeroth-order terms in the expansion vanish, giving

�k1 =
(

1

μp

− 1

μ1

)
ν1 +

(
1

μp

− 1

μ0

)
ν2 +

(
1

μp

− 1

μ0

)
ν3,

�k2 =
(

1

μ0
− 1

μ2

)
ν2 +

(
1

μ0
− 1

μ3

)
ν3. (13)

For simplicity, we define the coefficients of ν1,ν2,ν3

in Eq. (13) as a1 = 1/μp − 1/μ1,a2 = 1/μp − 1/μ0,b1 =
1/μ0 − 1/μ2,b2 = 1/μ0 − 1/μ3. Since it is difficult to inte-
grate the products of Gaussians and sinc functions in Eq. (10),
we have made use of the approximation in our calculation to
express the sinc function as Gaussians through the approxima-
tion sinc(x) ≈ exp(−γ x2), where the parameter γ = 0.193 is
derived from equating the full-width half maximum of the two
functions. In this way, we will obtain the triplet in an integral
format of detuning variables:

|�〉 = C1

∫
dν1dν2dν3F (ν1,ν2,ν3)a†

ν1
a†

ν2
a†

ν3
|0〉. (14)

The spectral properties are fully determined by F (ν1,ν2,ν3),
which we refer to as the joint spectral amplitude (JSA) of the
triplet wave function described as

F (ν1,ν2,ν3) = e−i(�k1L1+�k2L2)/2e−(ν1+ν2+ν3)2/σ 2

× e
− γL2

1a2
1

4

[
ν1+ a2

a1
(ν2+ν3)

]2

e
− γL2

2b2
1

4

(
ν2+ b2

b1
ν3

)2

.

(15)

III. FREQUENCY CORRELATION OF TRIPLETS
UNDER EXTENDED PHASE MATCHING

In this section, we mainly discuss frequency correlation
of triplets under EPM conditions. EPM requires that, besides
the conversional phase-matching condition, group velocity
matching (GVM) is also satisfied, as described in Refs. [8,9].
In order to manipulate the spectral properties of triplets, both
the group velocity and the phase velocity are required to be
matched simultaneously. It may be difficult for conventional
BPM crystals, but it is competent for QPM in periodically
poled materials since the reciprocal vector can be designed
after the GVM condition is satisfied. However, this will
constrain the EPM happening at a certain wavelength of
a certain polarization configuration inside a certain QPM
crystal. The contour of the joint spectral intensity (JSI) is
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FIG. 2. [(a), (b)] The pump envelope intensity with the bandwidth
σa = 5.33 THz, σb = 0.533 THz, respectively. [(c), (d)] The phase-
matching intensity with the crystal length Lc = 1 cm, Ld = 2 cm;
the subscripts denote the corresponding subfigure. Panels (e) and
(f) correspond to the joint spectral intensity determined by panels
(a) and (c) and panels (b) and (d), respectively.

determined by |F (ν1,ν2,ν3)|2, which consists of the pump
envelope intensity and phase matching intensity. Unlike the
analysis in Refs. [34,35], the JSI of triplets consisted of two
phase-matching functions and a pump envelope function.

We start our analysis by giving a description of frequency
correlation between ν0 and ν1 generated in the first SPDC
process. Depending on the relative widths of the pump function
and phase-matching function, the JSI can be either anticor-
related, uncorrelated, or positively correlated. The width of
the pump envelope intensity contour is proportional to the
pump bandwidth, while the angle is fixed at 45 deg with
the minus direction of the horizontal coordinate due to the
energy conservation law. In other words, the pump envelope
function itself tends to yield anticorrelation. Figures 2(a) and
2(b) show plots of pump envelope intensity. Gaussian shape
has been assumed for the pump, and the values of bandwidth
in Figs. 2(a) and 2(b) are σa = 5.33 THz and σb = 0.533 THz,
respectively. The details of the other parameters we selected
are described in Subsec. B. Figures 2(c) and 2(d) show plots
of phase-matching intensity, where the width of the phase-
matching intensity is related to the inverse of the crystal length.
The angle between the phase-matching intensity contour and
the horizontal coordinate is not fixed; it is decided by the

group velocities of the pump, signal, and idler photons, i.e.,
the specific values of a2/a1 in Eq. (15). The crystal length Ld

we choose in Fig. 2(d) is twice of the length Lc in Fig. 2(c),
yet the width of the contour is just half. When the widths of
the pump function and phase-matching function are similar
and the angle of the phase matching intensity is at 45 deg [see
Figs. 2(a) and 2(c)], the JSI can achieve a circular shape and
the corresponding state has a low degree of entanglement as
shown in Fig. 2(e). It shows anticorrelation between ν0 and ν1

in Fig. 2(f) when the width of the pump envelope intensity in
Fig. 2(b) is more narrow than the width of the phase-matching
intensity in Fig. 2(d), and positive correlation when the contour
of phase matching intensity is more narrow.

A. Inseparable tripartite frequency correlation

Now we take the second SPDC process into consideration;
ω0 serves as the pump in the second segment, creating a pair of
new photons with frequencies ω2 and ω3. Three photons with
detuning frequencies ν1, ν2, and ν3 share different frequency
correlations under different conditions. If the crystal is pumped
with a monochromatic continuous wavelength (cw) laser, i.e.,
σ → 0, the sum of the frequencies of the down-converted
photons is fixed, thus the frequencies of photons ω0 and ω1

are anticorrelated in the first SPDC stage. In this situation,
a frequency measurement on one photon exactly determines
the outcome of a frequency measurement on the other photon.
Once the frequency ω1 is fixed, the down-converted photons
ω2 and ω3 in the second SPDC process are anticorrelated,
although none of them are determined for their sum of fre-
quencies is fixed at ω0. To some extent, the inseparable triplet,
generated via the cascaded parametric processes, pumped
by a monochromatic cw laser or by a narrow-band laser, is
naturally endowed with a specific form of strong frequency
anticorrelation induced by the energy conservation law. The
JSA of the nonseparable triplet can be written as

F (ν1,ν2,ν3) = e−αν2
1 e−βν2

2 e−ην2
3 e−ιν1(ν2+ν3)e−κν2ν3 , (16)

where α = 1/σ 2 + γL1
2a1

2/4, β = 1/σ 2 + γL1
2a2

2/4 +
γL2

2b1
2/4, η = 1/σ 2 + γL1

2a2
2/4 + γL2

2b2
2/4, ι = 2/σ 2

+ γL1
2a1a2/2, and κ = 2/σ 2 + γL1

2a2
2/2 + γL2

2b1b2/2.
Figure 3 shows a plot of JSI of the triplet calculated by the
formula |F (ν1,ν2,ν3)|2 pumped by a narrow-band laser with a
bandwidth of 5 MHz. Correlation between two subsystems ν2

and ν3 can be obtained by tracing out ν1 in the tripartite state
described as

I(ν2,ν3) =
∫

dν1|F (ν1,ν2,ν3)|2. (17)

Following the same method, it is easy to plot frequency
correlation contours between any two photons in the tripartite
state. ν1 and the sum of ν2 and ν3 show a clear anticorrelation
in the three-dimensional JSI of triplet, but two of them do not
show a specific type of correlation. Shalm et al. [24] have ex-
perimentally demonstrated genuine tripartite frequency-time
entanglement between three separated particles.

B. Factorable tripartite frequency correlation

If the pump spectrum is not perfectly monochromatic, it
is still true that energy is conserved in the PDC process, but
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FIG. 3. JSI of the triplet and the corresponding projection be-
tween any two of the photons. ν1 and the sum of ν2 and ν3 show
a clear anticorrelation, but two photons of the triplet do not show a
specific type of correlation.

the correlations are weakened due to the larger spread of the
signal-idler sum frequencies, and the tripartite state shows a
rich spectral structure. The property of correlation is governed
on the one hand by the spectral pump distribution and on the
other hand by the dispersive properties of the used crystal. By
adapting the pump bandwidth and the corresponding group
velocities of the pump and down-converted photons for specific
crystal, it becomes possible that factorable tripartite frequency
correlation can be generated.

According to Eq. (16), we can obtain a factorable tripartite
correlation by eliminating the last two exponential terms; then
we need to keep

2

σ 2
+ γL1

2a1a2

2
= 0,

2

σ 2
+ γL1

2a2
2

2
+ γL2

2b1b2

2
= 0.

(18)

From the above equations, we can see that due to the con-
straints of group velocity, a1a2 < 0, b1b2 < 0 are required. The
inequality a1a2 < 0 may be met either when μ0 < μp < μ1 or
when μ1 < μp < μ0 in the first SPDC stage, and μ2 < μ0 <

μ3 or μ3 < μ0 < μ2 should be satisfied for b1b2 < 0 in the
second stage. That is to say, the group velocity of the pump
ωp and ω0 in the two SPDC processes must lie between that of
the two down-converted photons. For simplicity, we assume
a1 = −a2, b1 = −b2, and when these GVM conditions are
satisfied, the reciprocal group velocity of the pump is equal to
the average of the signal and idler reciprocal group velocities,
i.e., 2/μp = 1/μ0 + 1/μ1,2/μ0 = 1/μ2 + 1/μ3.

Since different nonlinear crystal have different dispersive
properties of group velocity, after comparing the group velocity
of different polarizations in several materials, we choose
lithium niobate as the quadratic nonlinear crystal in our
proposal, not only for the GVM conditions, but also for
its large second-order nonlinear coefficient. Then we may
give an example based on nondegenerate cascaded SPDC
in periodically poled lithium niobate (PPLN) crystal. Two
conditions of GVM are considered together; we can select
the proper wavelength of the pump and the down-converted

FIG. 4. The ellipsoid in the box represents the JSI of ν1, ν2, and
ν3. Projection of the ellipsoid on the bottom, left, and back sides
exhibit no correlation between ν1 and ν2, ν2 and ν3, and ν1 and ν3,
respectively.

photons. In the first poled region, a pulsed laser beam at
λp = 656 nm serves as the pump and drives the type-I SPDC
process (e → o + o) in order to produce nondegenerate photon
pairs at λ0 = 800.16 and λ1 = 3641.14 nm. By deploying
the photon λ0 again as the pump in the second type-I SPDC
stage (e → o + o), we can generate secondary down-converted
photon pairs λ2 = 1390.46 and λ3 = 1884.78 nm. The GVM
conditions in PPLN at the mentioned wavelengths are sat-
isfied for both type-I processes. However, between the two
processes, a electro-optic polarization converter [36] should
be used to change the polarization state (o → e) by applying
a voltage to photons 0 and 1. After calculating the inverse of
group velocity for these wavelengths, we know a1 = −a2 =
8.54 × 10−11 (m/s)−1, b1 = −b2 = 1.62 × 10−11 (m/s)−1. In
this case, in order to cancel zeroth-order phase matching for
the selected wavelength, the grating periods �1 = 16.29 μm
and �2 = 20.56 μm are required. Then both the GVM and the
conversional phase-matching condition are satisfied.

Under the EPM conditions, from Eq. (18) we know that
if σL1 = 5.33 × 1010 (Hz m) and σL2 = 3.97 × 1011 (Hz m)
are satisfied at the same time, ν1, ν2, and ν3 will be fully
uncorrelated. Then the JSA of the factorable tripartite can be
written as

F (ν1)F (ν2)F (ν3) = e−αν2
1 e−βν2

2 e−ην2
3 . (19)

For a pump field centered at 656 nm having a full width at half
maximum (FWHM) bandwidth of 20 nm, the corresponding
range of adjustable spectral bandwidth is 0–13.94 THz. We
can plot the JSI of the tripartite state |F (ν1,ν2,ν3)|2 with the
selected parameters. For our PPLN example, in order to meet
the conditions of no frequency correlation, it is feasible to select
the pump bandwidth σ = 13.94 THz; then the crystal can keep
reasonable lengths of L1 = 3.82 mm and L2 = 2.85 cm. These
parameters yield a ellipsoid JSI in a shape which represents the
lack of correlation of ν1, ν2, and ν3 as depicted in the box of
Fig. 4. A nearly perfect circular frequency spectrum intensity
is projected on the ν2-ν3 plane, which is fully uncorrelated
between ν2 and ν3. Because of the symmetry of ν2 and ν3,
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TABLE I. Relations between the relative bandwidths of pump
function and phase-matching function in the cascaded SPDC pro-
cesses, and the corresponding correlations they exhibit. σ is the pump
bandwidth; L1 and L2 are the length of two SPDC areas.

Relations between ν0 and ν1 in SPDC1

σ � 2√
γL1a1

σ ≈ 2√
γL1a1

σ 
 2√
γL1a1

anticorrelated uncorrelated positively correlated

Correlation of ν2 and ν3 when ν0 and ν1 are uncorrelated

σ � 2√
γ

[
b2

1L2
2−a2

1L2
1

] σ ≈ 2√
γ

[
b2

1L2
2−a2

1L2
1

] σ 
 2√
γ

[
b2

1L2
2−a2

1L2
1

]
anticorrelated uncorrelated positively correlated

both the projections on the ν1-ν2 plane and ν1-ν3 plane exhibit
the same ellipse shape with slightly elongation along one axis.
However, the range of frequencies expected for either photon
in the circular contour or in the ellipse shape is independent of
the frequency detected for its sibling.

C. Separable one photon and biphoton

In Subsec. B, we give the exact solution of Eq. (18) with
the proper parameters. As discussed previously, we can also
manipulate the tripartite frequency correlation by comparing
the relative widths of the pump function and phase-matching
function. We divided the discussion of separable tripartite
frequency correlation into several steps.

First, we consider the correlation between the photons ω1

and ω0 produced in the first SPDC process. The bandwidth of
phase-matching function δφ1 = 2√

γL1a1
can be obtained from

the expression of bipartite spectral function, and the pump
bandwidth is σ . In order to eliminate frequency correlations
in SPDC1, σ and δφ1 should be designed so as to ensure
the bandwidths of the two functions are similar, i.e., σ ≈

2√
γL1a1

. However, in the first SPDC process ν1 and ν0 can be
anticorrelated either by reducing the pump bandwidth σ or by
increasing the crystal length L1. And they can be positively
correlated by increasing the pump bandwidth σ or by reducing
the crystal length L1. When there is no correlation between ν1

and ν0, and ν0 splits into ν2 and ν3, the JSA of tripartite can be
described as a separable one photon and biphoton

F (ν1)F (ν2,ν3) = e−Aν2
1 e−B(ν2+ν3)2

e−C(ν2−ν3)2
, (20)

where A = 1/σ 2 + γL2
1a

2
1/4, B = 1/σ 2 + γL2

1a
2
1/4, C =

γL2
2b

2
1/4. From the expression above, we can see that ν1 is

independent of ν2 and ν3, which can be traced out from the
tripartite. Then we consider the correlation between photon
pairs ω2 and ω3 generated in the second SPDC process. It is
obvious that how the detuning frequencies ν2 and ν3 are cor-
related depends on the comparison between the bandwidths of
two exponential functions which are related to B and C. When

these two values are equal, i.e., σ = 2/

√
γ [b2

1L
2
2 − a2

1L
2
1] is

satisfied, ν2 and ν3 can be uncorrelated. As we can see from
this formula, the correlation is not only related to σ and L1, but
also it can be manipulated by varying the length L2. Relations
between the pump bandwidth σ and other parameters are listed
in Table I as well as the corresponding correlations they exhibit.

FIG. 5. Manipulation of frequency correlation between ν2 and ν3

by varying the length of L2 when ν0 are uncorrelated with ν1, in
both panels (a) and (b), σ = 13.94 THz and L1 = 3.82 mm. (a) L2 =
1 mm; anticorrelation between ν2 and ν3 is exhibited. (b) L2 = 10 cm;
positive correlation between ν2 and ν3 is exhibited.

By combining the two SPDC processes together, we can
select σ = 13.94 THz as a fixed value since both processes
share a common pump bandwidth, and the crystal length is
set to L1 = 3.82 mm and L2 = 2.85 cm. In this case, the
conditions for lack of correlation for two processes can be
met simultaneously. Given a specific down-converted event
in the first (second) stage, we can manipulate the frequency
correlation between ν2 and ν3 (ν0 and ν1) by changing L2

(L1), respectively. For example, if we keep L1 = 3.82 mm
unchanged, but L2 is reduced to 1 mm, then the JSI between
ν2 and ν3 will exhibit anticorrelation distribution while it
remains uncorrelated between ν1 and ν0 (sum of ν2 and ν3)
which can be observed from the contour of three-dimension
graphics and projections in Fig. 5(a). If the length of L2 is
increased to 10 cm, then the JSI of ν2 and ν3 will exhibit
frequency positive-correlation contour as shown in Fig. 5(b).
Another case is of particular interest, when it is uncorrelated
of ν2 and ν3 generated in the second SPDC process, but it
is positively correlated or anticorrelated of ν0 and ν1 in the
first process. We can herald the generation of photon pairs ω1

and ω3(ω2) in the corresponding correlation deterministically
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by the measurement of photon at frequency ω2(ω3); this is
very important and interesting because it provides a source of
heralded correlation photon pairs for quantum communication
and processing applications.

IV. CONCLUSION

In this paper, we investigate manipulation of tripartite
frequency correlation under EPM conditions in a monolithic
quadratic nonlinear crystal. Based on PPLN crystal waveguide,
we designed a cascaded periodically poled structure for two
nondegenerate SPDC processes. According to our analysis, by
adjusting the crystal length of two different segments and the
bandwidth of pulse pump laser, the frequency spectrum will
show a full correlation, partial correlation, or no correlation,
corresponding to a fully inseparable triplet, separable one
photon and biphoton, or three separable photons, respectively.
Fully inseparable triplet implies genuine tripartite entangle-
ment, which is suitable for three-party quantum secret sharing.

Separable one photon and biphoton can be used to herald the
entangled photon pairs deterministically but without posts-
election. Three separable photons are valuable resources in
multiphoton boson sampling experiment, which is a promising
approach to obtain evidence of quantum supremacy. These
approaches proposed for manipulation of frequency correlation
in a single crystal may provide useful tools for the management
of multipartite entanglement in quantum communication and
networking.
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