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Weyl fermions have not been found in nature as elementary particles, but they emerge as nodal
points in the band structure of electronic and classical wave crystals. Novel phenomena such as Fermi
arcs and chiral anomaly have fueled the interest in these topological points which are frequently
perceived as monopoles in momentum space. Here, we report the experimental observation of
generalized optical Weyl points inside the parameter space of a photonic crystal with a specially
designed four-layer unit cell. The reflection at the surface of a truncated photonic crystal exhibits phase
vortexes due to the synthetic Weyl points, which in turn guarantees the existence of interface states
between photonic crystals and any reflecting substrates. The reflection phase vortexes have been
confirmed for the first time in our experiments, which serve as an experimental signature of the
generalized Weyl points. The existence of these interface states is protected by the topological
properties of the Weyl points, and the trajectories of these states in the parameter space resembles those
of Weyl semimetal “Fermi arc surface states” in momentum space. Tracing the origin of interface states
to the topological character of the parameter space paves the way for a rational design of strongly
localized states with enhanced local field.
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I. INTRODUCTION

Great effort has been devoted to investigate various
intriguing phenomena associated with Weyl points [1–6],
such as the Fermi arc surface states [7,8] and the chiral
anomaly [2] associated with electronic systems. Besides
electronic systems, Weyl points have also been found in
photonic [9–14], acoustic [15,16], and plasmonic [17]
systems.Up to now,Weyl points havemostly been identified
as momentum space magnetic monopoles, i.e., sources or
sinks of Berry curvature defined in momentum space. As
such,Weyl points are usually perceived as topological nodal
points in the 3D momentum space defined by Bloch
momentum coordinates kx, ky, and kz. On the other hand,
a few recent works considered the topological singular
points in the synthetic dimensions [18–20] instead of the

momentum space. The interest in considering synthetic
dimensions is fueled by the ability of realizing physics in
higher dimensions [18,21–24] and the possibility of sim-
plifying experimental designs [25]. Moreover, the possible
control over the synthetic dimensions enables the exper-
imental verification of the nontrivial topology of any closed
surface enclosing the topological singular points [18,19].
Here, we experimentally realize generalized Weyl points in
the optical frequency regime with one-dimensional pho-
tonic crystals (PCs) utilizing the concept of synthetic
dimensions. Different from previous works [18–20] that
replaced all three dimensions with synthetic dimensions,
here we replace two wave vector components with two
independent geometric parameters (which form a parameter
space) in the Weyl Hamiltonian and keep one dimension as
the wave vector. By doing this, we retain the novel bulk-
edge correspondence relation between the edge states and
the Weyl points. This is not possible for other topological
singular points in purely synthetic dimensions [18–20].
Meanwhile, our hybridized Weyl points also preserve the
advantage of using synthetic dimensions, which facilitates
the experimental investigation of Weyl physics in the
optical region, whose structures are otherwise complex
[11,12,15,26,27] and, hence, difficult to fabricate at such
frequencies.
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The Weyl Hamiltonian can be written as H ¼P
i;jkivi;jσj [28], where vi;j, ki, and σi, with i ¼ x, y, z,

represent the group velocities, wave vectors, and the Pauli
matrices, respectively. Unlike 2D Dirac points, Weyl points
are stable against perturbations when the wave vectors
remain as good quantum numbers and the Weyl points do
not interact with other bands [9]. Each Weyl point has its
associated topological charge given by the Chern number
of a closed surface enclosing it [5]. ThoughWeyl points are
usually defined in the 3D momentum space, very recently
Weyl physics has been theoretically discussed in synthetic
dimensions [25]. Instead of using all three components of
the wave vector, here we replace two wave vector compo-
nents with two independent geometric parameters, and
experimentally investigate the generalizedWeyl points with
simple 1D PCs. Such generalizations preserve the standard
Weyl point characteristics, such as the associated topologi-
cal charges [11,13] and robustness against variations in the
parameters [9].
Moreover, optical interface states can be found between

the PCs possessing syntheticWeyl points and any reflection
substrates, whose existence is stable and protected by the
topological properties of the synthetic Weyl points. We
show that the reflection phase of a truncated PC exhibits
vortex structures [29] in the parameter space around a
synthetic Weyl point. These vortexes carry the same
topological charges as the corresponding Weyl points.
The reflection phase along any loop in the parameter space
enclosing the center of the vortex (also the position of the
Weyl point) varies continuously from −π to π. This
property guarantees the existence of interface states at
the boundary separating the PC and a gapped material such
as a reflecting substrate [30,31] independent of the proper-
ties of the substrate. The above physical interpretation
serves as the bulk-edge correspondence [30,32] for the
synthetic Weyl points in our system. These interface states
can be regarded as analogues of edge states in Weyl
semimetals [3,6,7], and they can be useful in nonlinear
optics [33–35], quantum optics [36,37], thermal radiation
[38], etc. [39–42]. The winding of the reflection phase has
also been discussed in the context of adiabatic charge
pumping and Floquet Weyl phases in a three-dimensional
network [43–45]. Furthermore, we also introduce a third
geometric parameter, which extends the three-dimensional
space to four-dimensions. By tuning the third geometric
parameter, we also observe the topological transition from
Weyl semimetals to nodal line semimetals [9,46].

II. RESULTS

A. Synthetic Weyl points in parameter space

To illustrate the idea of synthetic Weyl points in a
generalized parameter space, we consider a 1D PC con-
sisting of four layers per unit cell, as shown in the inset in
Fig. 1(a). In our experiments, the first and third layers

(blue) are made of HfO2 with refractive index na ¼ 2.00,
and the second and fourth layers (red) are made of SiO2

with refractive index nb ¼ 1.45. The thickness of each
layer is given by

da1 ¼ ð1þ pÞda;
db1 ¼ ð1þ qÞdb;
da2 ¼ ð1 − pÞda;
db2 ¼ ð1 − qÞdb: ð1Þ

Since the thickness of each layer cannot be a negative
value, p and q both fall in ½ − 1; 1�, which makes the p-q
space a closed parameter space. The total optical length L
inside the unit cell is a constant 2ðnada þ nbdbÞ for the
whole p-q space. As illustrated in Fig. 1(a), the structural
parameters p and q, together with one Bloch wave vector k,
form a 3D parameter space in which Weyl physics can be
studied.
We start with the PCs with only two layers inside each

unit cell, a layer of HfO2 with thickness da and a layer of
SiO2 with thickness db. The band dispersion is plotted in
Fig. 1(b) in red. A four-layer PC with parameters p¼0
and q ¼ 0 simply doubles the length of each unit cell and
folds the Brillouin zone. The dispersion of this four-layer
PC is shown in Fig. 1(b) in blue. Such artificial band
folding gives a linear crossing along the wave vector
direction. Away from the point where p ¼ 0 and q ¼ 0,
the degeneracy introduced by the band folding is lifted
and a band gap emerges. Figure 1(c) shows the band
dispersions in the p-q space with k ¼ 0.5k0, where
k0 ¼ π=ðda þ dbÞ. Two bands form a conical intersection
indicating that band dispersion is linear in all directions.
To characterize this degenerate point, we derive an
effective Hamiltonian for the parameters around it (see
Appendix A):

H ¼ pvpzσz þ qvqyσy þ ξkvkxσx; ð2Þ

where ξk ¼ðk−0.5k0Þ=k0, vpz ¼ 0.1073, vqy ¼ −0.0946,
and vkx ¼ −1.985 for our system. This Hamiltonian
possesses a standard Weyl Hamiltonian form, and with
the Weyl node located at ðp; q; kÞ ¼ ð0; 0; 0.5k0Þ carries a
“charge” of −1 according to the usual definition. The
topological charge of this Weyl point can also be
numerically verified, using the method in Ref. [5] to
calculate the Weyl point charge. As shown in the inset in
Fig. 1(d), the Berry phases are defined on a spherical
surface with a fixed azimuthal angle θ (red circle). We
then track the evolution of the Berry phases as a function
of θ, as shown in Fig. 1(d), which shows that the Chern
number of the band below the Weyl point decreases by
one as θ increases from 0 to π. This implies that the Weyl
point has a negative charge. (See Appendix B for more
details.)
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In addition to the Weyl point constructed above, we also
find Weyl points on higher bands and at different positions
in the parameter space. In Fig. 2, we show all the Weyl
points on the lower five bands at either k ¼ 0.5k0 or k ¼ 0.
The locations and charges of these Weyl points are marked
in the insets. The Weyl point between band 1, the lowest
band, and band 2 [Fig. 2(a)] with charge −1 has already
been discussed above. Two Weyl points with charge −1
exist between band 2 and band 3. Weyl points with charge
þ1 appear on higher bands. To realize a Weyl point in
the reciprocal space, one needs to break either inversion
symmetry or time-reversal symmetry. Our systems possess
time-reversal symmetry but do not exhibit inversion
symmetry for general p and q. Time-reversal symmetry
requires that the charges of two Weyl points at ðp0; q0; k0Þ
and ðp0; q0;−k0Þ are the same. Besides time-reversal
symmetry, our systems also exhibit the symmetry
εðp;q; xÞ ¼ εð−p;q;−xÞ ¼ εðp;−q;−xÞ ¼ εð−p;−q; xÞ,
where ε is the permittivity and x represents the real space
position. This symmetry ensures that as long as there is
a Weyl point at ðp0; q0Þ at a particular frequency, there
will be other Weyl points at ð−p0; q0Þ, ðp0;−q0Þ, and

ð−p0;−q0Þ, and these Weyl points will all possess the
same topological charge. Note that while the total charges
of Weyl points must vanish in periodic systems [47] as the
reciprocal space is periodic, such a constraint does not
apply here as the parameter space is not periodic. This
features one of the main differences between Weyl points
in synthetic dimensions and those in momentum space.

B. Reflection phases around the Weyl points

We now consider the reflection phase of a normal
incident plane wave when the PC is semi-infinite. The
working frequency of the incident wave is chosen to be the
frequency of the Weyl point between band 1 and band 2.
Except for the p ¼ q ¼ 0 point, the working frequency is
inside the band gap for all other p and q values. Hence, the
reflection coefficient can be written as r ¼ expðiϕÞ, with ϕ
being a function of p and q. In Fig. 3(a), we show the
reflection phase in the whole p-q space, where the
truncation boundary is at the center of the first layer.
The reflection phase distribution shows a vortex structure,
with the Weyl point at the vortex center. The topological

FIG. 1. Realization of Weyl points in a parameter space. (a) Photonic crystals (PCs) with different p, q values. The p, q form a
parameter space. The inset shows one unit cell of the PC, where the first and the third layers are made of HfO2 (blue), and the second and
the fourth layers are made of SiO2 (red). The thickness of each layer depends on its position in the p-q parameter space. (b) The band
dispersion of PCs with different unit cells (red line for a PC with only two layers and blue line for a PC the unit cell of which consists of
two unit cells used for the red line). Here, da ¼ 97 nm and db ¼ 72 nm. (c) The dispersion of PCs in the p-q space with k ¼ 0.5k0, and
k0 ¼ π=ðda þ dbÞ. Here, two bands form a conical intersection. Panels (b) and (c) together show that the band dispersions are linear in
all directions around the degeneracy point, indicating that it is an analogue of the Weyl point. (d) Berry phases defined on the spherical
surface with a fixed θ (see the inset), where blue and red represent Berry phases on the lower and the upper band, respectively. The radius
of the sphere is 0.001.
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charge of this vortex is given by the winding number of
the phase gradient [48], which is the same as that of the
Weyl point. For illustration purposes, we choose a circle
centered at this Weyl point as marked by the gray dashed
circle in Fig. 3(a). The reflection phase along the circular
loop decreases with the polar angle φ, and picks up a total
change of −2π after each circling. We note that the same
circle does not enclose anyWeyl points between band 2 and
band 3. The reflection phase at the frequency of the Weyl
points between band 2 and band 3 is shown in Fig. 3(c) (the
circular loop is also marked). Now the reflection phase
along the loop in Fig. 3(c) covers a range much less
than 2π.
The above conclusion can also be experimentally veri-

fied. We choose five PC configurations whose locations in
the p-q space are indicated by the white circle, triangle,
square, diamond, and pentagram in Figs. 3(a) and 3(c). The
PCs here are fabricated by electron beam evaporation on a
substrate made of K9 glass. Before evaporation, we clean
the substrate with an acidic solution. During the evapora-
tion, the pressure in the chamber is kept below 2 × 10−3 Pa,
and the temperature is maintained at 90 °C. The uncertainty
in the thickness of each layer in the fabrication is
below 10 nm for all the PCs. Here, we set da ¼ 97 nm,

db ¼ 72 nm, and the number of unit cells to 15. The
layers in these five PCs are given by ðp; qÞ ¼
ð0.24; 0.44Þ, ð−0.11;0.49Þ, ð−0.38;0.31Þ, ð−0.45;0.22Þ,
and ð0.33;−0.37Þ, respectively. We use two spectrometers
to measure the reflection phase of the PCs. One spec-
trometer ranges from 880 to 1700 nm with a resolution of
0.8 nm (BWTEK-BTC 261E Cooled InGaAs Array
Spectrometer). The other ranges from 330 to 1070 nm
with a resolution of 0.8 nm (BWTEK-BTC 611E
Spectrometer). The reflection phase is measured
using a Fabry-Perot interference setup (see Sec. I of the
Supplemental Material for a more detailed setup [49]).
The measured reflection phases across the first and

second band gaps are shown in Figs. 3(b) and 3(d),
respectively, where different markers correspond to differ-
ent samples. Black dashed vertical lines mark the frequency
of the Weyl points and gray areas represent the passband
region. We also numerically calculate the reflection phases,
and we show the results in Figs. 3(b) and 3(d) with colored
curves. The experimental results agree reasonably well with
the numerical results. The reflection phases in Fig. 3(b) are
uniformly distributed and cover the whole ½ − π πÞ range,
while the reflection phases in Fig. 3(d) cover only a narrow
range. Whether the reflection phase trajectories span the

FIG. 2. The band dispersions in the parameter space at different k points. (a) Bands 1 and 2 at k ¼ 0.5k0. (b) Bands 2 and 3 at k ¼ 0.
(c) Bands 3 and 4 at k ¼ 0.5k0. (d) Bands 4 and 5 at k ¼ 0. The conical intersections in (a)–(d) all correspond to Weyl points with
positions and charges (“þ” for charge þ1, “−” for charge −1) marked in the insets, in which the dashed lines denote p ¼ 0 or q ¼ 0.
Here, we use the same parameters as those in Fig. 1.
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gap region [as in Fig. 3(b)] or not [as in Fig. 3(d)] depends
on whether the loop in the parameter space encloses a Weyl
node or not, given the fact that the total phase change must
be 2π if the loop encircles a Weyl point; a proof is in
Appendix C. We emphasize that the vortex structure and
the charge of the vortex are independent of the position
where we truncate the PCs. Though the reflection phase
vortex we discuss here is in the generalized parameter
space, the reflection phase vortex acts as a signature of
Weyl physics. See, for example, Ref. [45] and the dis-
cussions in Appendix C.

C. Fermi-arc-like interface states

The vortex structure and the associated topological
charge guarantee the existence of interface states [30,31]
between the PCs with Weyl points and the reflecting
substrates, regardless of the substrate properties. The
existence of interface states [30] is given by

ϕPC þ ϕS ¼ 2mπ; m ∈ ℤ; ð3Þ

where ϕPC and ϕS represent the reflection phases of the
PC and the reflecting substrate, respectively. As the
reflection phase on the loop encircling the Weyl point
covers the whole ½−π; πÞ region, no matter what the
reflection phase of the reflecting substrate is, Eq. (3) can
always be satisfied for at least one polar angle. If we
consider loops with different radii, then the interface
states form a continuous trajectory beginning from the
Weyl point. The trajectory of the interface states ends
either at another Weyl point with an opposite charge or at
the boundary of the parameter space. The behavior of
these interface states connecting Weyl points with oppo-
site charges in the parameter space has the same
mathematical origin as that of the Fermi arc [1,2,4,7]
in Weyl semimetals. There is, however, a crucial differ-
ence: the Fermi arc starts and ends with Weyl points in a
periodic system, while the interface states in our system
can connect Weyl points to the boundary of the parameter
space because the total charge of the Weyl points does
not vanish inside the parameter space.

FIG. 3. The reflection phase in the p-q space. (a),(c) Reflection phase in the p-q space at the frequency of the Weyl point in
Figs. 2(a) and 2(b). The reflection phase shows a vortex structure with charge −1 around Weyl points. The white circle, triangle,
square, diamond, and pentagram mark the values of ðp; qÞ of the five samples, which are, respectively, ðp; qÞ ¼ ð0.24; 0.44Þ,
ð−0.11; 0.49Þ, ð−0.38; 0.31Þ, ð−0.45; 0.22Þ,and ð0.33;−0.37Þ. These five samples have configurations located on a circle (dashed
gray line) in the parameter space which encloses a Weyl point in (a) but does not enclose any Weyl point in (c). (b),(d) Reflection
phases in the band gaps of the five samples in (a) and (c). The markers show the experimental results whose shape marks the position in
the p-q space in (a) and (c), and colored lines represent the corresponding reflection phases from numerical simulations. The black
dashed lines mark the frequencies of the Weyl points in (a) and (c), and the bulk band regions of the PC with the narrowest band gap are
shaded in gray.
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As an example, we consider the Weyl points on the
fourth and fifth bands as shown in Fig. 2(d). There are a
total of eight Weyl points: six with charge −1 and the
remaining two with charge þ1. As our system does not
possess any external symmetry that can relate two Weyl
points with opposite charges, the frequency of the Weyl
points with a positive charge is higher than that of the
Weyl points with a negative charge. To turn the Weyl points
into the working frequency range of our measurements, we
increase the thickness of each slab in the PCs proportion-
ally and we now have da ¼ 0.323 μm and db ¼ 0.240 μm.
We then set the working frequency to the frequency of the
Weyl point with a positive charge (303 THz) and truncate
the PCs at the center of the first layer. A sketch of measuring
the interface states is shown in Fig. 4(a). Here, the silver slab
represents the silver film, blue represents HfO2, and red
represents SiO2. Wave incidents from the silver film side
and the interface states are localized in the interface region
between the silver slab and the semi-infinite PC. The
amplitude of the wave is shown schematically in yellow.
In Fig. 4(b), we show the reflection phase in the parameter
space, where gray areas within black dashed lines mark the
regions of the bulk band. If the truncated PCs are coatedwith
silver films, then interface states exist that satisfy Eq. (3).
The reflection phase of the silver film coated on the PCs is
measured to be ð−0.95� 0.0471Þπ at 303 THz. The white
dashed lines in Fig. 4(b) show the trajectories of interface
states. In addition to interface states connectingWeyl points
with different charges, there are also trajectories of interface
states terminating at the boundary of our parameter space.
We also perform experiments to verify the results.We choose
four points [positionsmarkedwith cyan triangles in Fig. 4(b)]

to experimentally demonstrate the existence of the
interface states, with samples consisting of 10 periods,
and the thickness of the layers in these four PCs are
given by ðp; qÞ ¼ ð0.50; 0.26Þ, (0.56,0.30), (0.70,0.38),
and (0.78,0.36) respectively. The results are shown in
Fig. 4(c) (red crosses) and match well with the numerical
prediction (cyan dashed line); a more detailed setup can be
found in Sec. II of the Supplemental Material [49]. We
emphasize here that the existence of interface states is
“robust” to the property of the reflecting substrates: we can
always find trajectories of interface states that link the two
Weyl points with opposite charges no matter what the
reflecting substrate is (See Sec. III of the Supplemental
Material [49]).

D. “Nodal lines” in higher-dimensional space

Compared with Bloch momentum space, synthetic
dimensions provide a flexible way to construct topological
systems in higher-dimensional space, which enables the
study of phenomena that occur only in higher-dimensional
spaces [23]. As an example, we can define another
parameter R as the ratio R ¼ nada=ðnada þ nbdbÞ, which
belongs to ð0; 1Þ. By varying this parameter, we can now
observe topological transitions of the band structures.
In Fig. 5, we show the dispersion of the fourth and fifth
band gaps with k ¼ 0 for different values of R. The insets
show the positions of the Weyl points (black circles) and
degenerate lines (dashed lines). When R ¼ 0.25 [Fig. 5(c)],
0.5 [Fig. 5(e)], and 0.75 [Fig. 5(g)], only degenerate lines
exist, which act as analogues of the nodal lines in
semimetals [50]. When R passes through these transition

FIG. 4. The “Fermi arc” in the parameter space. (a) A sketch shows the structure used in measuring the interface states. Here, the silver
slab represents the silver film, blue represents HfO2, and red represents SiO2. Wave incidents from the silver film side and the interface
states are localized in the interface region between the silver slab and the semi-infinite PC. The amplitude of the wave is shown
schematically in yellow. (b) The reflection phase of the PCs at the frequency of Weyl points with chargeþ1with its dispersion shown in
Fig. 2(d). The bulk band regions at the working frequency are shaded in gray. The white dashed lines show the trajectories of the
interface states of a system consisting of a semi-infinite PC coated with a silver film, where the semi-infinite PC is truncated at the center
of the first layer. These interface state trajectories are analogues of Fermi arc states. The triangles mark the p and q values of the four
samples in the experiment. (c) The cyan line indicates the working frequency used in (b), and the red crosses label the experimental
results. The projection of the bulk band as a function of q is shaded in gray. The number of unit cells is 10, and da ¼ 0.323 μm and
db ¼ 0.240 μm for the four PCs in (c). The thickness of layers in these four PCs are given by ðp; qÞ ¼ ð0.50; 0.26Þ, (0.56,0.30),
(0.70,0.38), and (0.78,0.36), respectively.
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points, Weyl points will immerse as node lines and
reappear. In the process, a pair of Weyl point with positive
and negative charge will appear or disappear simultane-
ously. Although the number of Weyl points changes, the
total charge remains constant.

III. CONCLUSION

We show the existence of Weyl points in the parameter
space and their topological consequences. In the specific
example of dielectric superlattices, the reflection phase of
the semi-infinite multilayered PC shows a vortex structure
with the same topological charge as the synthetic Weyl
points defined in the parameter space. The vortex structure
guarantees the existence of interface states, which can be

used in various systems [33–42]. (See also one example
given in Sec. IV of the Supplemental Material [49].) In
general, interface states may or may not exist at the
boundary between a 1D PC and a reflecting substrate
[30]. The Weyl points here provide a deterministic scheme
to construct interface states between multilayered PCs and
reflecting substrates of arbitrary reflection phases [31]. In
the past, numerical simulation was the only way to predict
the optical properties of photonic crystals with complex
unit cells defined by many parameters and there was no
easy way to connect the bulk properties to the surface
properties such as reflectance and the existence of interface
states. Here, we see that the topological character of the
nodal points in the higher-dimension space defined jointly
by momentum and structural parameters actually connects

FIG. 5. Topological transitions occur as we change the parameter R defined in the text. (a)–(i) Band structures of band 4 and band 5
with different values of R at k ¼ 0. The values of R are 0.05, 0.15, 0.25, 0.35, 0.5, 0.65, 0.75, 0.85, and 0.95 for (a)–(i), respectively.
The insets show the positions of the Weyl points (“þ” for positive charge and “−” for negative charge) and “nodal lines”
(black dashed lines).
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the properties of the bulk to those of the surface. We
emphasize that the topological notions apply to all frequen-
cies, including high-frequency gaps where the PCs cannot
be described by the effective medium theory.
The geometric parametersp andq are fixed for each PC in

this work. However, there are techniques [51–54] that can be
employed to control the geometric parameters as well as the
refractive index in real time. Combined with the under-
standing of the topological origin of the interface states, such
tunability allows for the control of the interface states, which
may facilitate various applications. In addition, the reflec-
tion phase vortex offers a flexible way to manipulate the
electromagnetic wave, such as generating vortex beams and
controlling the reflection direction. This work also opens up
a new direction for experimentally exploring the physics in
topological theory in higher dimensions [23]. With more
parameters involved, we can also constructWeyl points with
a higher topological charge [12,13,55].
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APPENDIX A: EFFECTIVE HAMILTONIAN
AROUND THE WEYLD POINTS

Here, we adapt the transfer matrix method to derive
the effective Hamilton around the Weyl points. Each unit
cell is composed of four layers, the transfer matrix can be
written as

T ¼
�

C D

D� C�

��
A B

B� A�

�
; ðA1Þ

where

A ¼ eikada1
�
cosðkbdb1Þ þ

i
2

�
nb
na

þ na
nb

�
sinðkbdb1Þ

�
; ðA2Þ

B ¼ e−ikada1
�
i
2

�
nb
na

− na
nb

�
sinðkbdb1Þ

�
; ðA3Þ

C¼ eikada2
�
cosðkbdb2Þþ

i
2

�
nb
na

þna
nb

�
sinðkbdb2Þ

�
; ðA4Þ

D ¼ e−ikada2
�
i
2

�
nb
na

− na
nb

�
sinðkbdb2Þ

�
; ðA5Þ

and the wave equation can be written as

½T − ei2kðdaþdbÞ�
�
cþ

c−

�
¼ 0; ðA6Þ

where cþ and c− represent the coefficients of the forward-
propagating and backward-propagating waves inside the
first layer, respectively. We define the following dimen-
sionless coefficients:

ξf ¼ ðf − fwÞ=fw;
ξp ¼ ðp − pwÞ;
ξq ¼ ðq − qwÞ;
ξk ¼ ðk − kwÞ=k0: ðA7Þ

Here, ðpw; qw; kwÞ denotes the position of the Weyl point
under consideration, and fw is the frequency of the Weyl
point. The system under consideration supports only one
forward-propagating wave and one backward-propagating
wave. Hence, if there is a Weyl point, the Weyl point must
be located at the Brillouin zone center or zone boundary.
Expanding T with respect to ðξp; ξq; ξfÞ around the Weyl
point, it is easy to show that the zero-order term of T is
either 1 or −1 (depending on whether the Weyl point is at
the zone boundary or the zone center). Hence, up to the first
order of ðξp; ξq; ξfÞ, we have

T ¼
 
�1þ ic1ξp þ ic2ξq þ ic3ξf d1ξp þ d2ξq þ d3ξf

d�1ξp þ d�2ξq þ d�3ξf �1 − ðic1ξp þ ic2ξq þ ic3ξfÞ

!
þOðξ2p; ξ2q; ξ2fÞ: ðA8Þ

Meanwhile, as detðTÞ ¼ 1, one can prove that fc1; c2; c3g ∈ ℝ. Keeping only the first order, Eq. (A6) can be written as

 −ðc1ξp þ c2ξq − c4ξkÞ −iðd1ξp þ d2ξqÞ
iðd�1ξp þ d�2ξqÞ −ðc1ξp þ c2ξq þ c4ξkÞ

!�−icþ
ic−

�
¼ ξf

�
c3 id3

−id�3 c3

��−icþ
ic−

�
; ðA9Þ
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where fc1; c2; c3; c4g ∈ ℝ and fd1; d2; d3g ∈ ℂ. Note that
now the matrixes on both sides of Eq. (A9) are Hermitian
matrixes. The matrix on the right-hand side of Eq. (A9) can
be decomposed as

�
c3 id3

−id�3 c3

�
¼ U

�
c3 − jd3j 0

0 c3 þ jd3j

�
U†; ðA10Þ

where

U ¼ 1ffiffiffi
2

p
�−id3=jd3j id3=jd3j

1 1

�
: ðA11Þ

After some simple mathematics, Eq. (A9) can be written as

�
c3− jd3j 0

0 c3þjd3j

�−1=2
U†MU

�
c3− jd3j 0

0 c3þjd3j

�−1=2

×

�−i~cþ
i~c−

�
¼ξf

�−i~cþ
i~c−

�
; ðA12Þ

where

M¼
 −ðc1ξpþc2ξq−c4ξkÞ −iðd1ξpþd2ξqÞ

iðd�1ξpþd�2ξqÞ −ðc1ξpþc2ξqþc4ξkÞ

!
;

ðA13Þ

and

�−i~cþ
i~c−

�
¼
�
c3 − jd3j 0

0 c3 þ jd3j

�
1=2

U†
�−icþ

ic−

�
:

ðA14Þ

Equation (A12) can be reformulated in the Pauli matrix
form as

ð ξp ξq ξk Þv

0
BBB@

σ0

σx

σy

σz

1
CCCA
�−i~cþ

i~c−

�
¼ ξf

�−i~cþ
i~c−

�
; ðA15Þ

where σi (i ¼ x, y, z) is the Pauli matrix, σ0 is a 2 × 2
identity matrix, and v is a 3 × 4 real matrix. Hence, the
matrix on the left-hand side of Eq. (A12),

H ≡ ð ξp ξq ξk Þv

0
BBB@

σx

σy

σz

σ0

1
CCCA; ðA16Þ

works as an effective Hamiltonian of the system. This
effective Hamiltonian processes a Weyl form.
We choose the Weyl point between band 1 and band

2 as an example. Here, ðpw; qw; kwÞ ¼ ð0; 0; 0.5k0Þ, with
k0 ¼ π=ðda þ dbÞ. For the PC with da ¼ 97 nm,
db ¼ 72 nm, the frequency of this Weyl point is at
fw ¼ 247.6 THz. Around this Weyl point, the coefficient
matrix is given by

v ¼

0
B@

0 0 0.1073 0

0 −0.0946 0 0

−1.985 0 0 0

1
CA: ðA17Þ

Hence, according to the definition, the charge of this Weyl
point is −1. For other Weyl points, there are more nonzero
coefficients in Eq. (A17). To verify that the obtained
effective Hamiltonian works, we plot the dispersion along
the three directions p, q, k in Figs. 6(a)–6(c), respectively.
Red dashed lines are calculated using the effective
Hamiltonian, while the blue circles are from the full wave
simulations. They agree well near the Weyl point, which
shows that the effective Hamiltonian works.

FIG. 6. The dispersion near the Weyl points. Panels (a)–(c) show the comparison between the numerical result (blue circles) and the
effective Hamiltonian in Eq. (A16) (red dashed lines) in three directions. The parameters of the PC are given by da ¼ 97 nm,
db ¼ 72 nm, and the Weyl point considered is between the first and the second bands.
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APPENDIX B: NUMERICAL CALCULATIONS
OF THE TOPOLOGICAL CHARGES

We adapt a numerical method used in the literature to
determine the charges of Weyl points. We first calculate the
Berry phase on the circle on a spherical surface (centered at
the Weyl point) with a fixed k, and then trace the evolutions
of the Berry phases as k varying from the upper pole to the
lower pole. The total change of the Berry phase corre-
sponds to the Chern number of this spherical surface. To
illustrate this idea, we choose two loops li and liþ1, as
shown in Fig. 7(a), and assume the Berry phases of them
are given by γi and γiþ1, respectively. The Berry phases
along these loops equal the Berry fluxes out of the upper
spherical crown of these two loops. The Berry phases here
arewell defined up to an uncertainty of 2mπ (m ∈ ℤ).When
li and liþ1 are very close to each other, the Berry phases of
these two loops must also be close to each other and the
difference between them equals the Berry flux coming out
from the strip region between li and liþ1. Hence, the change
of the Berry phase over the whole spherical surface equals
the Berry flux out of the Weyl point.
To numerically calculate the Berry phase for each loop,

we use a discretized algorithm [5]:

γn ¼ −ImXN
i¼1

ln

�ZL
0

εðxÞu�n;pi;qi;k
ðxÞun;piþ1;qiþ1;kðxÞdx

�
;

ðB1Þ
where ε represents the permittivity and un;pi;qi;kðxÞ is the
periodic-in-cell part of the eigenelectric field of a state
on the nth band and with parameters pi, qi, and k. Here,
pi ¼ r sinðθÞ cosði2π=NÞ, qi ¼ r sinðθÞ sinði2π=NÞ, and N
has been chosen to be large enough such that γn converges.

In Fig. 7(b), we plot Berry phases on band 1 (blue) and
band 2 (red) as a function of θ. In the calculation, the radius
of the sphere in Fig. 7 is set to be r ¼ 0.001. We can see
that the variation range of the Berry phase is 2π for the
upper band (the red line) and −2π for the lower band (the
blue line), which means the charge of this Weyl point is−1.

APPENDIX C: REFLECTION PHASES
AROUND WEYL POINTS

In this Appendix, we show how to get the reflection phase
from the effective Hamiltonian obtained in Appendix A.
We choose the Weyl point between the first and second
bands as an example. The Hamiltonian of our system near
this Weyl point is given by

H ¼ ξpvpzσz þ ξqvqyσy þ ξkvkxσx; ðC1Þ

where vpz ¼ 0.1073, vqy ¼ −0.0946, and vkx ¼ −1.985 for
the Weyl point under consideration. Now let us consider an
elliptical loop circling theWeyl point in the parameter space
spanned by ξp and ξq:

ξpjvpzj ¼ r cosðφ0Þ;
ξqjvqyj ¼ r sinðφ0Þ; ðC2Þ

where φ0 is the polar angle in the new parameter space and
φ0 ∈ ½0; 2πÞ. φ0 processes a one-to-one correspondence to
the polar angle in the original parameter space φ through the
relation

tanðφ0Þjvpzj ¼ jvqyj tanðφÞ; ðC3Þ

In the following, we obtain the reflection phase as a function
of φ0 and show that the charge of the vortex of the reflection
phase is equal to the charge of the Weyl point. The elliptical
loop is chosen as defined in Eq. (C2) to simplify the
derivation. Here, we choose the working frequency to be
inside the bulk band gap, and, hence, ξf < r. We define
cos χ ¼ ðξf=rÞ, with χ ∈ ð0; πÞ. Substituting Eq. (C2) into
Eq. (C1), we obtain two solutions of ξk as

ξkvkx ¼ �ir sin χ: ðC4Þ

As expected, the wave vector ξk becomes purely imaginary.
We assume that the direction of the incident wave is along
the positive direction, and, hence, we require ImðξkÞ > 0.
The corresponding eigenstate is given by

u⃗ ¼
�

1

−iβ
�
; ðC5Þ

where

FIG. 7. The method to calculate the charge of the Weyl point
numerically. (a) Schematic illustration of the integration paths
used to calculate topological charges of Weyl points. (b) Berry
phases defined on the spherical surface with fixed θ, where blue
and red represent Berry phases on the lower band and the upper
band, respectively. The parameters of the PC are given by
da ¼ 97 nm, db ¼ 72 nm, and the Weyl point considered is
between the first and the second band. The radius of the
sphere is 0.001.
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β ¼ − cosðχÞ − cosðφ0Þ
sinðχÞ − sinðφ0Þ ¼ tan½ðφ0 þ χÞ=2�: ðC6Þ

Substituting Eq. (C5) in to Eq. (A14), we obtain the
coefficients of the forward-propagating and backward-
propagating wave as

�
cþ

c−

�
¼ 1ffiffiffi

2
p
 
eiψ1 ½ðc3− jd3jÞ−1=2þ iβðc3þjd3jÞ−1=2�
−i½ðc3− jd3jÞ−1=2− iβðc3þjd3jÞ−1=2�

!
;

ðC7Þ

where c3 and d3 are the coefficients defined in Eq. (A8) and
ψ1 ¼ argðd3Þ. To simplify the notation, we define

ψ2 ≡ tan−1
�
β

�
c3 − jd3j
c3 þ jd3j

�
1=2
�
; ðC8Þ

and

A0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

c3 − jd3j
þ β2

ðc3 þ jd3jÞ

s
: ðC9Þ

Now Eq. (C7) can be simplified as

�
cþ

c−

�
¼ A0

ffiffiffi
1

2

r �
eiψ1eiψ2

−eiπ=2e−iψ2

�
: ðC10Þ

Then the corresponding electronic field at the boundary of
the PC is

E1y ¼ cþeikax þ c−e−ikax

¼ A0½ðeiψ1eiψ2Þeikax − ðeiπ=2e−iψ2Þe−ikax�=
ffiffiffi
2

p
; ðC11Þ

where the subscript “1y “means the electric field is along the
y direction and inside the first layer, ka represents the wave
vector in the first layer, and x represents the distance from the
truncated plane to the starting plane of the first layer. The
corresponding magnetic field is

H1z ¼
1ffiffiffi
2

p
za

A0½ðeiψ1eiψ2Þeikax þ ðeiπ=2e−iψ2Þe−ikax�;

ðC12Þ

where za is the bulk impedance of the first layer (in units of
the vacuum impedance z0). Thus, the surface impedance of
the photonic crystal can be written as

Zpc ¼ iza½tanðψ1=2þ ψ2 þ kax − π=4Þ�; ðC13Þ

and the corresponding reflection phase as

ϕ ¼ π þ 2 arctan½−za tanðψ1=2þ ψ2 þ kax − π=4Þ�:
ðC14Þ

To show the validity of this method, we compare the
reflection phase obtained from Eq. (C14) to that from the
full wave simulation (where we use the transfer matrix
method). As the working frequency is inside the band gap
and if the number of unit cells is large enough, the reflection
phase will converge. In the full wave simulation, we ensure
that the number of unit cells is large enough. In Fig. 8, the red
circles and blue solid line represent the reflection phases
obtained with Eq. (C14) and the transfer matrix method,
respectively. They agree quite well with each other, which
shows that Eq. (C14) works in the region near the
Weyl point.
Now let us continue to analyze the monotonicity and

dependence of the reflection phase obtained in Eq. (C14). It
is easy to see thatϕ is amonotonically decreasing function of
ψ1=2þ ψ2 þ kax − π=4. The dependences ofϕ on the polar
angle φ and the working frequency are all inside the phase
ψ2. For theWeyl point under consideration, jc3j > jd3j, and,
hence, according to Eq. (C8), ψ2 is a monotonically
increasing function of β. Note that cos χ ¼ ðξf=rÞ, with
χ ∈ ð0; πÞ, so χ is amonotonically decreasing function of the
working frequency. Then combined with Eqs. (C2) and
(C6), we can conclude that ψ2 is a monotonically increasing
function of φ while a monotonically decreasing function of
theworking frequency. Combined with the dependence ofϕ
on ψ2, we find ϕ is a monotonically decreasing function of
the polar angleφ and amonotonically increasing function of
the working frequency. Combining Eqs. (C6) and (C8), we
know that when φþ χ goes from −π to π, ψ2 varies from−π=2 to π=2. Meanwhile, Eq. (C14) tells us that when

FIG. 8. The reflection phase as a function of the polar angle φ
on a circle with radius 0.01 in the p-q space around the Weyl
point. Blue solid line and red circles represent the reflection
phases calculated through the transfer matrix method and
Eq. (C14), respectively. Here, we consider the same Weyl point
as in Fig. 6. The parameters of the PC are given by da ¼ 97 nm,
db ¼ 72 nm, and the Weyl point considered is between the first
and the second bands and located at ðp; qÞ ¼ ð0; 0Þ. The PC is
truncated at the starting plane of the first layer, and the working
frequency is also fixed at the frequency of the Weyl point, which
is fw ¼ 247.6 THz.
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ψ1=2þ ψ2 þ kax − π=4 varies from −π=2 to π=2, the
reflection phase goes from π to −π. So we can conclude
that when the polar angle φ circles the Weyl point once, the
reflection phase goes continuously from π to −π once. This
explains the vortex structure of the reflection phase in the
parameter space, and the charge of the vortex is the same as
the charge of the Weyl point.
Also, changing the truncation position or the working

frequency just shifts the reflection phases and does not
change the conclusion above. As an example, we change
the truncating position, and now the PCs are truncated at
the starting plane of the first layer. The corresponding
reflection phases in the p-q space are shown in Fig. 9(a),
where the parameters used are the same as those in
Fig. 3(a), and the working frequency is also fixed at the
frequency of the Weyl point. Compared with Fig. 3(a), the
reflection phase in Fig. 9(a) changes locally, but the charge
of the vortex is still preserved. If the truncating position of
the PC is inside other layers, we can obtain the same
conclusion following a similar proof as the one given above.
We now analyze Eq. (C14) in more detail. When

ξf ¼ −r, we have χ ¼ π, which is independent of the
value of r, so the reflection phase maintains a constant for a
fixed φ, while for ξf ¼ r, we can also get the same result,
but with χ ¼ 0 instead. Now we consider the dispersion of
the interface states between PCs and a mirror with
reflection phase of 0 in the parameter space. As shown
in Fig. 9(b), the interface states form a surface which rotates
180° around the Weyl point as frequency increases. Such
features were discussed before [56]; however, as effective
Hamiltonians are used in Fig. 9(b), the intersection between
the interface states and the bulk states is a straight line here.
In the above derivation, we use the transfer matrix

method which is specialized to our systems. However,
the existence of the reflection phase vortex pinning at the
Weyl point is not specialized to our systems. To see this

point, let us focus on the band gap region. In general, the
surface property of a truncated bulk is characterized by the
impedance matrix [57]. However, if the surface property is
dominated by one plane wave component, then the surface
property can be approximately described by a scalar surface
impedance or equivalently the reflection phase [58]. Let us
now assume that inside the boundary region between a
systemwithWeyl points and a reflecting substrate there exist
arclike surface states originating from one Weyl point.
Note that these surface states should always exist regardless
of the property of the reflecting substrate; hence, the
reflection phase should be winding in the periodic
½− π πÞwhen circling around theWeyl point. This indicates
that the reflection phase vortex pining at the Weyl point is a
general feature in a system possessing Weyl points.
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