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Abstract: We propose in this paper a chirped-quasi-periodic structure using 
the projection method. This type of new structure combines the advantages 
of chirped and quasi-periodic structures, and can be used for both multiple 
quasi-phase-matching and multiple bandwidths control. Numerical 
simulation of second-harmonic generation performance is in good 
agreement with the Fourier spectrum of the structure. 
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1. Introduction 

One of the challenges in the field of nonlinear frequency conversion is to design a single 
poled grating structure that can simultaneously quasi-phase-match several different χ

(2)
 

processes [1–6]. A χ
(2)

 process involves the nonlinear mixing of two waves to produce a third 
wave at the sum or difference frequency. The process proceeds efficiently if the quasi-phase-
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matching (QPM) condition is satisfied. For example, in a sum frequency generation 

process
1 2 3

ω ω ω+ = , the QPM condition requires the wave vector mismatch between three 

waves
3 2 1

k k k k∆ = − − be compensated by a reciprocal lattice vector G , i.e. 
3 2 1

G k k k= − − . 

If a single χ
(2)

 process is desired, it is well known that for obtaining the largest Fourier 

coefficient the grating need to be periodically poled with period 2 / GπΛ = . If several χ
(2)

 

processes are desired to be cascaded into one grating, the structure of the grating needs to be 
fabricated by some new means, such as quasi-periodic structures [1,2], aperiodic structures 
[3,4], dual-periodic structures [5], numerically optimized phase modulation [6] and so forth. 

However, in cascaded χ
(2)

 processes, for effective generation of every process the 
matching temperatures of all these processes need to be the same. For example, in a third-
harmonic generation (THG) process [1], the third-harmonic (TH) wave is achieved by two 
steps—a second harmonic generation (SHG) cascading a sum frequency generation (SFG). 
Theoretically, using Sellmeier equation of the nonlinear material we can design a structure to 
quasi-phase-match these two processes perfectly. Practically, however, the QPM condition is 
sensitive. Tiny inaccuracy of Sellmeier equation or slight error of domain period will cause 
great shifts of the matching temperature of these processes. Therefore, the two bandwidths 
will not overlap well for efficient THG [7]. Moreover, for other cascaded processes such as an 
optical parametric oscillation (OPO) cascading a SFG or SHG [8,9], bandwidth matching of 
the two cascading processes is a crucial factor for generating desired visible light effectively. 

As is known, chirped structure [10–12] can be used to broaden acceptance bandwidth in 
nonlinear optical interactions. To solve the problem mentioned above, here we propose a 
novel structure for both multiple QPM and bandwidths controlling. The key point of our idea 
is to introduce chirping into quasi-periodic structure to design a chirped-quasi-periodic (CQP) 
structure. This idea provides more flexibility for structure designing of QPM gratings. 

The paper is organized as follows: In Section 2, the designing approach of CQP structure 
is derived using projection method. A concrete CQP structure is analyzed in Fourier space in 
Section 3. Numerical simulations using SHG to verify the validity of the structure are given in 
Section 4. And in Section 5 is our conclusion. 

2. Structure design 

A one-dimensional quasi-periodic (QP) structure can be obtained by projection from a square 
lattice [13], in which the ‘hidden symmetry’ of the one-dimensional QP structure is displayed. 
See Fig. 1. The projection line ξ has an angle θ to x axis. We label the orthogonal line to ξ as η 
axis and let the width of the projection window equal to the sum of the projection from unit 
spacing of x and y axis to η axis, i.e. w = sinθ + cosθ, as shown in Fig. 1. As long as the 
projection angle θ is irrational, the arrangement of the structure will be quasi-periodic. 

 

Fig. 1. Schema of the projection method to obtain a quasi-periodic structure. 
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From the projection method described above, we can obtain a two-component quasi-
periodic structure. The two components—block A and block B—are projected by vertical and 
horizontal spacing, respectively. For dielectric optical superlattice such as periodically-poled 
lithium niobate (PPLN) or lithium tantalite (PPLT), we set both block A and B consisting of a 
positive domain and a negative domain, and the lengths of the positive domains in each block 
have the same value l. The reciprocal vectors of this structure are given in Ref [2]: 

 , 2 ,
m n

A B

m n
G

D D

τ
π
τ

+
=

+
  (1) 

where the arrangement parameter τ is equal to the proportion of block number of A, NA, to 
block number of B, NB , i.e. τ = NA / NB. DA, DB are the lengths of block A and B, respectively. 

When the quasi-periodic arrangement is projected from a square lattice, the proportion DA 
/ DB is fixed, and we have τ = tanθ. However, in a more general situation, DA / DB is an 
adjustable parameter [2]. Under such circumstance the quasi-periodic arrangement needs to be 
projected from a rectangular lattice instead, and τ still indicates the proportion of block 
numbers, but the relation τ = tanθ do not hold any more. 

Considering the situation of a rectangular lattice, let dx and dy indicate the horizontal and 
the vertical spacing, respectively. Then we can obtain the expression of τ: 

 tan .xA

B y

dN

N d
τ θ= =   (2) 

Equation (2) indicates the arrangement parameter τ varies with the spacing of the projection 
lattice. 

We present here a new grating designing approach which introduces the chirping factor 
into QP grating. Specifically, in the projection method described above, if we chirp the 
spacing of the original projection lattice first, then the influence of chirping will be hidden in 
the projected quasi-periodic structure, so that we obtain a chirped-quasi-periodic structure. To 
obtain a CQP structure we could chirp its horizontal and/or vertical spacing. 

For a linear chirping, we can define a chirp factor r to describe the chirp rate, see Ref [3]: 

 
( ) ( )

( )

0( 0)

( ) (1)
,

x y x y

x y

x y

d N d
r

d

−
=   (3) 

where di(1), di(N)and di0 represent the length of the first, the last and the nominal spacing of 
the lattice, i = x,y indicates horizontal and vertical, respectively. The nth spacing’s length is: 

 ( ) ( ) ( ) 0( 0)( ) (1) .x y x y x y x y

n
d n d r d

N
= +   (4) 

However, chirping is not limited to linear [11]. Indeed, as long as the domain period varies 
with position, linearly or non-linearly, the grating can be considered as chirped. 

Here we present the general situation. We set both spacing vary with position arbitrarily, 
i.e. dx = dx(ξ) and dy = dy(ξ), ξ is the coordinate along the direction of the QP grating. From 
Fig. 1 we can see that using variable ξ to describe the spacing variation is equivalent to using 
coordinate x and y since they are proportional. Moreover, here we use continuous functions to 
describe discrete spacing, which is the same as Eq. (4) in Ref.12. Actually, for a given starting 
point, using a recursion method the desired structure can be easily obtained. 

Generally, introducing of chirping will bring two kinds of influences to the QP structure. 
First, chirping the projection lattice will apparently affect the length of the blocks. Since all 
blocks A are projected from vertical spacing while all blocks B are projected from horizontal 
spacing, the block lengths DA and DB will vary with position ξ as following forms: 
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 ( ) ( )sin ,
A y

D dξ ξ θ=   (5) 

 ( ) ( ) cos .B xD dξ ξ θ=   (6) 

Secondly, chirping will also affect the arrangement parameter τ. From Eq. (2) we know 
that for a CQP structure τ can be expressed as: 

 
( )

( ) tan .
( )

x

y

d

d

ξ
τ ξ θ

ξ
=   (7) 

Noticing that τ is a localized parameter in a CQP structure, different positions ξ have 
different quasi-periodic arrangements, which is totally different from the traditional QP 
structure. Substituting Eq. (5-7) into the expression of reciprocal vectors Eq. (1), we obtain: 

 

2 2

,

cos sin cos sin
( ) 2 ( ) 2 ( ).

( ) ( ) ( ) ( )
m n

x y B A

m n m n
G

d d D D

θ θ θ θ
ξ π π

ξ ξ ξ ξ
= + = +   (8) 

Equation (8) can be treated as a more general expression of reciprocal vectors Gm,n of QP 
structure, which includes arbitrary spacing nonuniform. In Eq. (8) we use two sets of 
parameters (dx, dy, θ) and (DA, DB, θ) to describe the CQP structure. The former one shows the 
origin of the structure and is convenient for analyzing in projection method, and the latter one 
depends directly on the real block lengths DA and DB, which is therefore easier to draw 
structure. In the rest of this paper, we use the latter form to describe the structure. The 
deriving using the former form will be similar. 

From Eq. (8) the designing approach of the multiple-bandwidth-controlling-structure can 
be obtained. Specifically, if we want two arbitrary reciprocal vectors Gm1,n1 and Gm2,n2 to 
stretch with position ξ as arbitrary form Gm1,n1(ξ) and Gm2,n2(ξ), then resolving following 
equations: 

 

2 2

1 1

1, 1

2 2

2 2

2, 2

cos sin
( ) 2 ( ),

( ) ( )

cos sin
( ) 2 ( ),

( ) ( )

m n

B A

m n

B A

m n
G

D D

m n
G

D D

θ θ
ξ π

ξ ξ

θ θ
ξ π

ξ ξ


= +



 = +

  (9) 

we obtain: 

 

2

2 1 1 2

2 1, 1 1 2, 2

2

2 1 1 2

1 2, 2 2 1, 1

2 sin ( )
( ) ,

( ) ( )

2 cos ( )
( ) .

( ) ( )

A

m n m n

B

m n m n

m n m n
D

m G m G

m n m n
D

n G n G

π θ
ξ

ξ ξ

π θ
ξ

ξ ξ

 −
= −


− = −

  (10) 

Equation (10) give the form of block lengths varying with position ξ when two desired 
reciprocal vectors are given. As shown in Eq. (10), the two blocks vary with position as a 
quite complex form, which in most case is non-linear chirping. 

3. Fourier transformation of CQP structure 

In this section, we design a concrete CQP structure and analyze it in Fourier space. The quasi-
periodic structure we choose is projected from a rectangular lattice with horizontal spacing dx0 
= 19.1µm and vertical spacing dy0 = 17.5µm to a line with slope tanθ = 0.414, the initial block 
lengths are DA0 = 6.69µm and DB0 = 17.64µm and the lengths of positive domain in both 
blocks are l = 6µm. For a 10-mm-long grating, the Fourier transformation of this QP grating 
is: 
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Fig. 2. Fourier transformation of a quasi-periodic grating. 

Some strong reciprocal vectors are marked in Fig. 2. From Eq. (10) we know that two 
bandwidths can be controlled simultaneously in a CQP structure. Here we select two arbitrary 
reciprocal vectors, G11and G21, and let G11 holds its δ–function shape while G21 linearly 
stretches to ± δG, the two reciprocal vectors will vary with position ξ as following forms: 

 

2 2

1,1

0 0

2 2

2,1

0 0

cos sin
( ) 2 ( ),

2cos sin / 2
( ) 2 ( ) .

/ 2

B A

B A

G
D D

L
G G

D D L

θ θ
ξ π

θ θ ξ
ξ π δ


= +




− = + +

  (11) 

Here L is the length of the grating, ξ is the position coordinate of the grating, varies from 0 
to L. Substituting (11) into (10), we obtain the relation of two block lengths vary with 
position: 

 

2

0

2

0

1 ( / 2)
( ) 1/ ( ),

sin

1 ( / 2)
( ) 1 / ( ).

cos

A

A

B

B

G L
D

D L

G L
D

D L

δ ξ
ξ

π θ

δ ξ
ξ

π θ

− = −



− = +


  (12) 

As expected, DA and DB both non-linearly vary with position ξ. From Eq. (12) we could 

obtain the structure parameters of the CQP grating. Here we choose δG = 0.01µm
−1

. The 
Fourier transformation of this structure is shown in Fig. 3 and the detail of G21 is shown in 
inset. From Fig. 3 we can see that G11 holds its original shape and G21 is stretched to ± 

0.01µm
−1

. 
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Fig. 3. Fourier transformation of the CQP grating. The inset shows the detail of G21. 

4. Second-harmonic generation in CQP structure 

From analysis above we know that in a CQP grating some reciprocal vectors could hold the δ-
function shape while the others were stretched. Thus we could expect these two kinds of 
reciprocal vectors will have different bandwidths in second-harmonic generation (SHG) 
process due to the bandwidth-broadening effect of chirped gratings [12]. 

We choose two reciprocal vectors of the CQP structure described in Section 3, G21, which 

was stretched to ± 0.01µm
−1

, and G11, which was not stretched, for numerical SHG. And we 
choose lithium tantalate (LT) as the nonlinear crystal and set the working temperature at 
180°C. Using Sellmeier equation. of LT, we can estimate that G11 and G21 can quasi-phase-
match SHG process around 1334.4 and 1103.9 nm, respectively. Under the slow-varying 
amplitude approximation, a SHG process should satisfy the following couple-wave equations 
[14] during propagation: 

 

*1 33

1 2 1

1

22 33

2 1

2

( )
/ exp( ),

( )
/ exp( ),

2

d f x
dE dx i E E idkx

n c

d f xi
dE dx E idkx

n c

ω

ω


= − −



 = −


  (13) 

where Ei, ωi, ni, indicate the electric field, angular frequency and refractive index of waves, 
and the subscript i = 1,2 represents the fundamental and second-harmonic wave, respectively. 
dk = k2-2k1 represents the wave vector mismatch between fundamental and SH wave. Here we 
choose x, instead of ξ, to describe the propagating direction of waves, and f(x) satisfies: 

 
1 ,

( )
1 .

when x is in the positive domain
f x

when x is in the negative domain


= 

−
  (14) 

The numerical results of SH conversion efficiency spectrums are shown in Fig. 4. From 
the figure we can see, the full width at half maximum (FWHM) of the δ-function-shaped 
reciprocal vector G11 is around 0.3nm while the FWHM of the linearly-stretched reciprocal 
vector G21 is about 9nm, which is 30 times that of G11. The two SHG bandwidths are in good 
agreement with the Fourier spectrum in Fig. 3. 
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Fig. 4. SHG conversion efficiency versus fundamental wavelength using reciprocal vectors G11 
(a) and G21 (b) in a CQP structure (The initial intensity of fundamental wave is 30MW/cm2). 

Since the temperature mismatch and the wavelength mismatch can both be considered as a 
kind of phase-mismatch [12], based on the wavelength bandwidth data above we can obtain 
the temperature bandwidth of two reciprocal vectors. For the unstretched G11 the 0.3nm 
wavelength FWHM equals 2.4°C temperature FWHM, and for the stretched G21 the 9nm 
wavelength FWHM equals 134.3°C-222.3°C, which is 88°C temperature FWHM. 

The above example illustrates two bandwidths can be controlled simultaneously in a CQP 
grating. In cascaded processes such as THG, by designing a structure with unstretched SHG 
reciprocal vector and properly stretched SFG reciprocal vector (10

0
C for example), the two 

bandwidths can be overlapped with a high tolerance of temperature-shift, thus the bandwidth 
mismatching effect mentioned in Chapter 1 can be solved. 

5. Conclusion 

We have proposed a novel structure named chirped-quasi-periodic structure for both multi-
QPM and bandwidth control. We have analyzed the structure in Fourier space, and performed 
numerical simulations of SHG in CQP. Numerical results are in good agreement with theory. 
For further development, the CQP structure can be used for wide-tunable visible laser source 
based on cascading χ

(2)
 processes, ultrashort multi-wavelength pulse-compression, et. al. 
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