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Abstract: We report a compact scheme for the generation and manipu-
lation of photon pairs entangled in the orbital angular momentum (OAM)
from the fork-poling quadratic nonlinear crystal. The χ(2)-modulation in
this crystal is designed for fulfilling a tilted quasi-phase-matching geometry
to ensure the efficient generation of entangled photons as well as for trans-
ferring of topological charge of the crystal to the photon pairs. Numerical
results show that the OAM of photon pair is anti-correlated and the degree
of OAM entanglement can be enhanced by modulating the topological
charge of crystal, which indicates a feasible extension to high-dimensional
OAM entanglement. These studies suggest that the fork-poling nonlinear
photonic crystal a unique platform for compact generation and manipulation
of high-dimensional and high-order OAM entanglement, which may have
potential applications in quantum communication, quantum cryptography
and quantum remote sensing.
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1. Introduction

Entangled photons play an important role in studying the fundamental issues of quantum me-
chanics, quantum information science and technology. The widely used method to generate
entangled photons is spontaneous parametric down conversion (SPDC) in nonlinear crystals
[1–2]. The popularity of SPDC lies on the relative simplicity of its experimental realization,
and on the variety of quantum features that down-converted photons exhibit. The photon pair
generated via SPDC can be entangled in polarization, frequency, space, and orbital angular mo-
mentum (OAM) [3–6]. A number of investigations on the entanglement between spatial modes
carrying OAM has been discussed in the literatures owing to the extended possibilities they
provide [7–13]. For example, by increasing the size of the entangled quantum system, a variety
of fundamental tests [12] as well as higher-information-density coding can be performed [13].
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Modes carrying OAM are most commonly described in the Laguerre-Gaussian (LG) mode
set; these modes have amplitude distributions, LGp,l , characterized as [14]

LGp,l =

√
2p!

π(|l|+ p)!
1

ω(z)
(

√
2ρ

ω(z)
)|l|L|l|

p (
2ρ2

ω2(z)
)exp(− ρ2

ω2(z)
)exp(ilϕ)

exp[
ik0r2z

2(z2 + z2
R)

]exp[−i(2p+ |l|+1)tan−1(
z
zR

)], (1)

in which ω(z)=ω(0)[(z2+z2
R)/z2

R]
1/2 with zR being the Rayleigh range. The index l determines

the OAM carried by the photon in h̄ units, and p gives the number of nonaxial vortices and
2p+ l the mode order N. Ll

p(x) is the associated Laguerre polynomial. The LG modes can
form a complete Hilbert space and can thus be used to represent the paraxial regime of light
propagation. An important potential application of light beams carrying OAM is the generation
of photon pairs with discrete multidimensional entanglement. The OAM entanglement is a
quantum superposition of two-photon amplitudes over a variety of li and ls.

So far, the OAM entanglement between two photons differing by 600h̄ has been achieved
[10]. In addition to expanding the dimension of Hilbert space, the OAM entanglement can bring
an increased angular resolution which is enlarged by large OAM value [10, 15] in quantum re-
mote sensing when compared with classical methods. Therefore to engineer and manipulate the
OAM entanglement becomes a pivotal task in this field. The traditional method to generate the
OAM entanglement is the SPDC process, typically using the birefringence phase-matching in a
nonlinear crystal. Theoretical and experimental studies have shown that the OAM is conserved
during the SPDC process [6–13]. The tunable high-dimensional OAM entanglement can be
achieved by tuning the phase-matching conditions [7, 13].

In this paper we propose an alternative but compact scheme for the generation and manip-
ulation of OAM entanglement from the χ(2) nonlinear photonic crystal (NPC). The NPC, as
a type of artificial material with modulated quadratic susceptibility χ(2), can achieve high-
efficiency nonlinear interaction in a quasi-phase-matching (QPM) way or a required wavefront
of the parametric wave, or for both [16–24]. The sign of χ(2) in such a crystal is modulated
by reversing the orientation of ferroelectric domain according to some sequence to contribute
an additional “momentum” to compensate the mismatch of wavevectors among the interacting
waves. Nowadays, the NPC has been utilized in quantum optics, especially in the shaping of
spatial forms of entangled photons [25–27] which indicates that the study of QPM technique
has entered a new regime. Here in this work through the design of quadratic susceptibility of
the crystal, the NPC has a topological charge or quasi-angular momentum of its own which can
be further transferred to the photon pair during the SPDC process inside it. The degree of OAM
entanglement can be enhanced by increasing the crystal’s topological charge. Meanwhile, some
particular OAM states are also feasible and can be created with higher efficiency with respect
to the widely adopted methods based on post-selecting the OAM states.

2. Two-photon state from forked-poling nonlinear photonic crystal

We consider a quadratic nonlinear photonic crystal like LiNbO3 with a fork-shaped suscepti-
bility pattern in a type 0(ooo) SPDC configuration coupled with collinear propagation of the
signal, and idler photons. The fork-poling NPC is used for both satisfying the phase-matching
requirements to ensure high conversion efficiency and encoding the spatial information. Figure
1 shows a schematic illustration of the suggested setups, the pump beam is propagating in the
x− z plane with a tilted angle of θ . The k-vector diagram is presented to explain the QPM
scheme. The NPC can be poled following the structure function,

χ(2)(x,ϕ) = d22sgn(cos[2πx/Λ+ lcϕ]), (2)
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Fig. 1. Schematic diagram of the fork-shaped nonlinear photonic crystal and the momentum
conservation of the tilted SPDC.

which indicates the nonlinear coefficient d22 is utilized and its sign changes when the domain is
inverted with the poling period Λ. ϕ = tan−1(y/x) is the azimuthal angle and lc is the topolog-
ical charge of the crystal which can have an integer or fractional value. The Fourier expansion
of this binary modulation function is d22 ∑n F(gn)eignx+ilcϕ , where gn = n 2π

Λ (n=±1, ±2,...)
represents the nth-order reciprocal vector and F(gn) =

2
πn sin(πnD) corresponds to its Fourier

coefficient. D is called duty cycle, defined as a ratio of inverted-region width to the QPM period
Λ. Optimum structure for efficient QPM device means perfectly vertical penetration of inver-
sion from +z to −z surface with D = 0.5. Moreover, the smaller order reciprocal vector is, the
higher the SPDC conversion efficiency will be. The interaction Hamilton inside the NPC can
be written as

Ĥ = ε0

∫
d�rχ(2)Ê(+)

p Ê(−)
s Ê(−)

i +h.c. (3)

Ê(−) and Ê(+) are the negative- and positive- frequency parts of the electric field. H.c. means
the Hermitian conjugate. We will take the pump as Gaussian TEM00 and treat it classically for
simplicity. The beam waist ω0 is located at the center of the crystal. At the beam waist (z = 0),
it can be expressed in the scalar approximation

Êp =C0 exp(− (xcosθ − zsinθ)2 + y2

ω2
0

)exp[i(kp cosθz+ kp sinθx−ωpt)], (4)

where C0 is normalization constant. Whereas the produced signal and idler photons are treated
quantum mechanically, the negative parts of the field operators are

E(−)
j = Aj

∫
dω j

∫
d�q j exp[−i(�q j ·�ρ + k jzz−ω jt)]â

+
j (�q j), (5)

where â+j (�q j) ( j = s, i) is the creation operator, and Aj is the normalization coefficient. There-
fore the interaction Hamilton can be written as

H ∝
∫

dωs

∫
dωi exp[i(ωs +ωi −ωp)t]

∫
d�qsd�qi

∫
d�ρdz

×exp[i(kp cosθ − ksz − kiz)z]exp[i(gn + kp sinθ)ρ cosϕ]exp(ilcϕ)

×exp(− (ρ cosϕ cosθ − zsinθ)2 +(ρ sinϕ)2

ω2
0

)exp[−i(�qs +�qi)�ρ]â+s (�qs)â
+
i (�qi), (6)

in which, under the assumption of a monochromatic signal and idler photons, the longitudi-
nal components of wave vectors through Taylor expansions are k jz = k j − q2

j/2k j. Hence the
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entangled photons are generated under a tilted QPM condition,

kp sinθ +n
2π
Λ

= 0, (7)

kp cosθ − ks − ki = 0, (8)

where kp, ks, ki represent the wave vectors of pump, signal, idler, respectively. We take
the SPDC process of 780 nm (no=2.15585)→ 1560 nm (no=2.119)+1560 nm (no=2.119) at
T = 270C in a PPLT crystal as the example. SPDC sources at such wavelengths have wide ap-
plications in long-distance fiber-based quantum information processing. From Eqs. (7) and (8),
one can get θ = 10.6o and the transversal periodicity of NPC is Λ = 5.88 μm, which ensures
efficient entangled photons generation with the third-order reciprocal vector g3 = 3 ∗ (2π)/Λ.
The crystal length L=0.5 mm and the beam waist ω0=2 mm. Then we can neglect any z-variation
of the pump field envelopes based on the fact that the Rayleigh range of the pump field is much
larger than the medium length. The shift of the beam waist during the propagation is 0.12 mm
which is negligible as compared to ω0 = 2 mm due to the non-collinear length (Lnc = ω0/sinθ )
is much larger than the crystal length (L � Lnc) in this case. Thus the effect of the non-collinear
geometry is negligible and the coefficient cos(θ) (≈ 0.983) can be taken as 1 during the calcu-
lation [5, 28]. Therefore, the wave function evaluated from first-order perturbation theory can
be written as

Ψ ∝
∫

d�qsd�qiSinc[
Δkz

2
L]F(�qs,�qi)â

+
s (�qs)â

+
i (�qi)|vac >s |vac >i, (9)

where

F(�qs,�qi) =
∫

d�ρ exp(ilcϕ)exp(− ρ2

ω2
0

)exp[−iΔkxρ cosϕ]exp[−iΔkyρ sinϕ]

=

∫
ρdρ exp(− ρ2

ω2
0

)exp[ilc(φ +π/2)]Jlc(−ρ
√

Δk2
x +Δk2

y)

= F(Δk)exp[ilcφ ], (10)

with Δkx = qsx +qix, Δky = qsy+qiy, Δk2 = Δk2
x +Δk2

y , tanφ = Δky/Δkx and Jl are Bessel func-
tions of the first kind. We have used the Jacobi-Anger expansion exp[ixsinθ ] = ∑m Jm(x)eimθ

in the middle line. Furthermore, one can decompose the quantum state Ψ in the base
of the eigenstaes of the OAM operator as Ψ ∝ ∑ls ps ∑li pi

Clsli
ps pi |ls, ps; li, pi〉, with |l j, p j〉 =∫

d�q jLG(�q j)a+(�q j)|0〉 (j=s,i), yields the amplitudes

Clsli
ps pi

∝
∫

d�qsd�qiSinc[
Δkz

2
L]F(Δk)exp[ilcφ ]LG∗

ls ps
(�qs)LG∗

li pi
(�qi), (11)

where the mode function LGlp(�q) is the normalized LG modes in k space.
For simplicity, we assume the pump, signal, and idler beam have same beamwidth. Then

numerical evaluation will suggest that the terms in the sinc function is negligible due to the thin
crystal. Eq. (11) can also be written in the spatial space as

Clsli
ps pi

∝
∫

d�ρ exp[− ρ2

ω2
0

]exp[ilcϕ]LG∗
ls ps

(�ρ)LG∗
li pi

(�ρ). (12)

LGp,l(�ρ) is the amplitude distribution at the beam waist. The integral over the azimuthal coor-
dinate is ∫ 2π

0
dϕ exp[i(lc − ls − li)ϕ] = 2πδlc,ls+li , (13)
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which clearly enforces the OAM conservation: lc = ls + li. The integral over the radial coordi-
nate gives

Clsli
ps pi

∝ δlc,ls+li(
2
3
)ξ+1

√
ps!pi!(ps + |ls|)!(pi + |li|)!

ps

∑
i=0

pi

∑
j=0

(
−2
3

)i+ j

× (ξ + i+ j)!
(ps − i)!(|ls + i|)!i!(pi − j)!(|li + j|)! j!

, (14)

where ξ = (|ls|+ |li|)/2. The weights of the quantum superposition can be represented as
Pls,li

ps,pi = |Cls,li
ps,pi |2, which indicates the joint detection probability for finding one photon in the

signal mode (ls, ps) and the other one in the idler mode (li, pi).

3. The general quasi-phase-matching condition for OAM entanglement

It is worth noting that in the above discussions the signal and idler photons are designed to emit
perpendicularly with the x-y plane, which requires a large transverse reciprocal vector to fulfill
the transverse phase-matching of the SPDC process, therefore the high-order QPM geometry
is involved. This greatly reduces the efficiency of SPDC process, thus resulting a lower flux of
photon pairs. Here we propose a modified but more general QPM geometry which requires a
smaller reciprocal vector, i.e. a larger poling period so that the first-order QPM will be feasible
in experiment. The modified QPM diagram is presented in the inset of Fig. 2. Here the signal
and idler beams are still collinear but has a crossing angle θ with z-axis. α represents the
angle between parametric beams and pump beam. The proposed general QPM geometry can
introduce both phase-matching and encoded information on the same crystal axis and offer a
major improvement in conversion efficiency of the SPDC process. The transverse wave vectors

can be written as �qs and �qi, with k jl =
√

k2
j −q2

j ≈ k j − q2
j/2k j. q j contains the in-plane and

out-of-plane projections, written as q j‖ and q j⊥ respectively, with q =
√

q2
j‖+q2

j⊥. Hence we

have
�k j ·�r j = (k jl sinθ −q j‖ cosθ)x+q j⊥y+(k jl cosθ +q j‖ sinθ)z, (15)

and the phase mismatch along x, y, and z directions can be written as

Δkx = Δkx0 +(
q2

s

2ks
+

q2
i

2ki
)sinθ +(qs‖+qi‖)cosθ , (16)

Δky = qsy +qiy, (17)

and

Δkz = Δkz0 +(
q2

s

2ks
+

q2
i

2ki
)cosθ − (qs‖+qi‖)sinθ , (18)

with

Δkx0 = kp sin(θ +α)− (ks + ki)sinθ − 2π
Λ

= 0 (19)

Δkz0 = kp cos(θ +α)− (ks + ki)cosθ = 0. (20)

Equations. (19) and (20) represent the QPM conditions in the NPC. According to these condi-
tions, we then draw the poling period as a function of the angle (θ ). It it notable that the poling
period increases with θ . Therefore, it is possible to achieve the first-order QPM by tilting the
parametric beams. Compared with the third-order QPM process with aforementioned QPM ge-
ometry when θ = 0 , the SPDC efficiency can be improved by 9 times due to the increment
of the Fourier coefficient F(gn). For an example, we can choose θ = 8.6o (the corresponding
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α = 5o) and this corresponds to the poling period of Λ = 4.1μm, which is technically feasi-
ble in experiments [17, 22]. This is different from previous schemes [20–21], where the full
vectorial phase-matching condition was not fulfilled although their periods varied from 10 to
30 μm. The disadvantage of the partial phase-matching scheme is the resultant low nonlinear
conversion efficiency, yielding the nonlinear Raman-Nath pattern.

Fig. 2. The poling period, whose reciprocal vector is the first-order, as a function of θ . The
parameter we used in the discussion is annotated. Inset graph shows the k− vector diagram.

Based on Fig. 2, the larger poling period can be approached when further increasing the tilted
angle of parametric beams. However, this may cause the nonconservation of OAM [7] when
the approximation condition (Lnc 
 L) is not satisfied any more. So for this modified QPM
condition should be designed one hand to relax the poling technique and on the other hand to
enforce the OAM conservation. The annotated parameters in Fig. 2 are appropriate. In this case,

the term�qs(i) in Eq. (11) can be written as q′s(i)xx̂′+qs(i)yŷ, with q′s(i)x =
q2

s(i)
2ks(i)

sinθ +qs(i)‖ cosθ

in the coordinate shown in the inset of Fig. 2 (Here x̂′ is along the propagation direction of the
parametric beams). Then the term Δkx = q′sx+q′ix, and following the same derivation carried out
above, one can also get the OAM conservation law denoted by Eqs. (12) and (13). It deserves
to emphasize that for the tilted QPM scheme, the parametric beams are generated collinearly
but noncollinearly with the pump, which offers the natural separation with the pump and gets
rid of the dichroic element. The SPDC efficiency can be further increased by using thick QPM
crystals. Mg−doped LiNbO3 accompanied by a reduced coercive field to invert the polarization
and a suppressed photo-refractive damage is a candidate of the thick high-energy QPM device.
The 10−mm thick Mg−doped LiNbO3, realized in experiments, results in a great increment of
the nonlinear conversion efficiency [23]. A much larger beam waist and smaller incident angle
of the pump beam are needed in this case.
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Fig. 3. Correlations between ls and li for different values of lc, lc = 2, lc = 6, lc = 12, with
ps = pi = 0.

4. Characterizations on the degree of OAM entanglement

In most applications that make use of the OAM of photons, one may project the state into a
subspace of the complete Hilbert space that describes the mode function of the photon. This
implies considering only a fraction of the mode space. In Fig. 3 we plot the coincidence proba-
bilities as a function of ls and li for different values of lc with ps=pi=0. As it shows, the OAM
of photon pair is always anti-correlated under different lc, i.e. the larger ls corresponds to a
smaller li mode. This is consistent with the conversation law of lc = ls + li. The correlation
reaches its maximum at ls = li = lc/2. The physical origin is that maximum overlap between
the pump and the signal/idler modes, and hence maximum coincidence amplitudes, occurs at
lc/2. Moreover, as the value of lc increases, the quantum spiral bandwidth gets larger, which
indicates an increment of the usable number of entangled optical modes.

To extract the amount of entanglement involved in Ψ, one may resort to the Schmidt decom-
position, |Ψ >AB= ∑n

√
λn|φn >A |ϕn >B, where |φn >A, |ϕn >B are the Schmidt modes defined

by eigenvectors of the reduced density matrices for the signal and idler photons, respectively,
and

√
λn are the corresponding eigenvalues. Once the Schmidt coefficients are obtained, one

can obtain K = 1/∑n λ 2
n , which can be interpreted as a measure of the effective dimensionality

of the system. Since we are interested in the OAM entanglement, we can perform the Schmidt
decomposition in the azimuthal modes, |Ψ >= ∑l Cl |l > |lc − l >, which are automatically
Schmidt modes [29–33]. We can also quantify the entanglement by I-concurrence, defined as

C(Ψ) =
√

2(1−∑l C
2
l ).

In Fig. 4, we show the Schmidt number (K) and I-concurrence (C) as a function of lc for
ps = pi = 0. Obviously, the degree of OAM entanglement increases with lc. This is consistent
with Fig. 2 since larger extension of the number of modes are involved for larger lc. This shows
the OAM entanglement can be engineered by designing the structure of NPC. We also consider
what happens to the Schmidt number when the mode numbers p are not zero. As shown in
Fig. 5, we find that for ps = pi > 0, K decreases dramatically when lc �= 0 which is quite
different from the case of ps = pi = 0. In this case, there exists big contrast of Schmidt number.
We choose lc = 0 and lc = 20 while ps = pi = 8 to plot the OAM correlation as the insets
of Fig. 5. For the low K case, only several finite modes are involved. This can be useful for
the engineering of high order OAM entanglement by setting large lc, which can significantly
improve the sensitivity of angular resolution in remote sensing [10]. While for the high K case,
the OAM correlation is involved with a number of modes, indicating a way to engineer high-
dimensional OAM entangled state. Moreover, very high-dimensional Hilbert spaces become
accessible if we make use of the full spatial entanglement, i.e. hybrid azimuthal-radial quantum
correlations, by properly chosen detection-mode waist [9].
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Fig. 4. The Schmidt number (K) and I-concurrence (C) as a function of lc for ps = pi = 0.
The smooth fit lines are to guide the eye.

Fig. 5. The Schmidt number K as a function of lc for different values of the radial indices
ps (pi). Inset, the correlation distribution between ls and li for two different cases: lc = 0
and lc = 20 with ps = pi = 8. The smooth fit lines are to guide the eye.

5. Conclusion

In conclusion, we have investigated a compact scheme for generating and manipulating OAM
entanglement from the fork-poling quadratic nonlinear crystal under the condition of a tilted
QPM geometry is fulfilled. The first-order QPM is realizable to ensure high nonlinear conver-
sion efficiency. The total OAM is conserved through translating the crystal’s topological infor-
mation into the photons interacting in this crystal. Our results show that the fork-poling NPCs
with high topological charge can directly lead to high-order OAM entanglement with high effi-
ciency, which can significantly improve the sensitivity of angular resolution in remote sensing.
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Modulation of the topological charge of fork-poling NPCs can obviously increase the amount
of accessible entangled OAM modes, i.e. the degree of OAM entanglement. A growing body of
theoretical work calls for entanglement of quantum systems of higher dimensions. This opens
the door to generate high entanglement under various experimental conditions. Hence this com-
pact QPM device could give rise to new applications in the fields of quantum communication,
quantum cryptography and quantum remote sensing.
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