
PHYSICAL REVIEW A 86, 023852 (2012)

Generation of positively-momentum-correlated biphotons
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We propose to generate a counter-Einstein-Podolsky-Rosen (CEPR) state which possesses a positively-
correlated momentum and anticorrelated position directly from spontaneous parametric down-conversion. The
general CEPR state is given under a tightly focused Gaussian pump based on type II noncritical phase matching.
We analytically and numerically study how a positively-correlated momentum and anticorrelated position of
a biphoton can be achieved by choosing the proper focal parameter of the pump. To verify the degree of
entanglement of the CEPR state, we calculate its entanglement entropy and it shows a unique dependence on the
pump’s focal parameter. Suggestions for practical engineering of the state are also given. Furthermore, based on
an ideal CEPR state, we deduce a type of erect quantum ghost imaging which can be applied as the entanglement
criterion. This work gives applicable references to the spatial control of an entangled photon source in experiments
and may stimulate the development of new types of quantum technologies.
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I. INTRODUCTION

The famous “Einstein-Podolsky-Rosen (EPR) paradox”
[1], based on simultaneous entanglement over a continuum
of correlated position and anticorrelated momentum [2,3],
has boosted the research from fundamental physics [4] to
prosperous quantum technologies such as quantum imag-
ing [5–7], quantum lithography [8–10], quantum metrology
[11,12], and quantum computation [13]. A widely used method
for generating the EPR state is by spontaneous parametric
down-conversion (SPDC) from nonlinear crystals where the
transverse correlation of momenta between the signal and the
idler holds a strong anticorrelation when the pump is assumed
to be plane wave,

|�〉EPR =
∫

|�q,−�q〉 d �q =
∫

| �ρ, �ρ 〉 d �ρ, (1)

in which �ρ and �q represent the transverse position and
transverse momentum of photons, respectively. However,
according to the basic principle of quantum mechanics, there
must exist a counterpart of the EPR state which exhibits
a positively-correlated (or correlated for short) momentum
and anticorrelated position. The maximally entangled one is
described as

|�〉CEPR =
∫

|�q,�q〉 d �q =
∫

| �ρ,−�ρ 〉 d �ρ. (2)

Since the correlations of momentum and position in Eq. (2) are
just reverse to those of the original EPR state, the above two-
photon state can be referred as the counter-EPR (CEPR) state.

There has been plenty of research focusing on manipulation
of the position and momentum correlation of entangled photon
pairs by proper preparation of the pump beam [14–19] or
utilization of external optical elements [20–24]. Most works
focus on the generation of an anticorrelated-momentum EPR
state or how to minimize the momentum correlation. Very
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recently an interesting work brought people’s attention to
the CEPR state in which a positive momentum correlation is
realized by Hong-Ou-Mandel interference after the generation
of EPR photon pairs [25]. Here we propose to engineer the
CEPR state directly from nonlinear crystals by utilizing a
tightly focused pump beam. Based on type II noncritical
phase matching, we analytically and numerically study how
a correlated momentum and anticorrelated position can be
achieved by choosing the proper focal parameter of the
pump. Furthermore, by employing the entanglement entropy,
the degree of entanglement of the CEPR state is studied
and it shows a unique dependence on the focal parameter.
Suggestions for practical engineering of a CEPR state with a
high degree of entanglement are also given. Quantum ghost
imaging utilizing the ideal CEPR state is calculated, which
suggests that the erect ghost image can serve as the criterion
for the CEPR state. Other potential applications of such a
CEPR state are still under investigation.

Our paper is organized as follows. In Sec. II, the general
two-photon state with a positively correlated momentum is
given under the condition of a paraxial Gaussian pump. In
Sec. III, the position correlations of this state are studied
both analytically and numerically. There exists a good cor-
respondence between momentum and position correlations.
In Sec. IV, in order to denote the degree of entanglement
of the CEPR state, the entanglement entropy of the two-
photon state is calculated using the Schmidt decomposition
method. This section also includes suggestions on how to
engineer a CEPR state with a high degree of entanglement. In
Sec.V, possible applications of the CEPR state are discussed.
Quantum imaging based on an ideal CEPR state is calculated.
Conclusions are drawn in Sec. VI.

II. THE GENERAL TWO-PHOTON STATE
WITH A CORRELATED MOMENTUM

We give a general two-photon state with a correlated
momentum under the condition of a paraxial Gaussian pump.
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As we mainly study the property of the spatial correlation
between the signal and the idler, it is convenient to work in
a monochromatic approximation of them, which is further
justified experimentally through the use of narrow-band
interference filters. In the interaction picture, the Hamiltonian
HI is

HI = ε0

∫
d3rχ (2)E(+)

p E(−)
s E

(−)
i + H.c., (3)

where χ (2) is the effective second-order nonlinear coefficient.
E(+) and E(−) denote the positive- and negative-frequency
parts of the electric-field operators, respectively. H.c. means
the Hermitian conjugate. The pump is taken as Gaussian
TEM00 and considered as a classical electric field for sim-
plicity. It is focused and the beam waist w0 is located at
the center of the crystal. When propagating along the z axis
in an optically uniform medium, the pump has a transverse
intensity distribution that is everywhere a Gaussian. It can be
represented in the scalar approximation as Ref. [26]

A( �ρ,z) = Aw0

w(z)
e−ρ2/w2(z)eikρ2/2R(z)eiφ(z), (4)

where w(z) = w0(1 + z2/z2
0)1/2 represents the 1/e radius of

the field distribution. 2z0 = w2
0kp is the confocal length of the

pump and kp is the pump wave vector. R(z) = z(1 + z2
0/z

2)
denotes the radius of curvature of the pump wave front.
And φ(z) = − arctan(z/z0) represents the spatial variation of
the pump’s phase. The pump can be expressed by Fourier
expansion in the transverse momentum qp space:

Ep( �ρ,z,t) = Aei(kpz−ωpt)
∫

d2qpe
−q2

p(
w2

0
4 +i z

2kp
)
ei �qp · �ρ. (5)

According to Eq. (5), there are two limiting cases corre-
sponding to the weakly and strongly focused pump. Here,
we define a focal parameter ξ = L/2z0, in which L is the
length of the crystal along the pump propagating direction.
One case is that when ξ � 1, i.e., L � kpw2

0, the pump is
considered to be collimated, then Eq. (5) turns into E( �ρ,z,t) =
Aei(kpz−ωpt)

∫
d2qpe− q2

pw2
0

4 ei �qp · �ρ , which implies the longitudinal
momentum of pump kpz ≈ kp. In this case, the amplitude of
the pump electric field in Eq. (4) takes the form Ae−ρ2/w2

0 ,
which means that the curvature of the optical wave front, the
accretion of the beam waist radius, and the angular divergence
of the pump can be neglected. The opposite limiting case is

that ξ � 1, i.e., L � kpw2
0, the term e

−i
q2
p

2kp
z in Eq. (5) plays

an important role, which means that, for a different transverse
mode qp, the propagation phase is different. In this case, the
longitude momentum of pump kpz ≈ kp − q2

p/2kp.
Whereas the produced signal and idler photons are treated

quantum mechanically, their negative parts of the field opera-
tors are

E
(−)
j ( �ρ,z,t) = Ej

∫
d2qj e

−i(kjzz+�qj · �ρj )eiωj t â†(�qj ,ωj ), (6)

where â†(�qj ,ωj ) (j = s,i) is the creation operator with modes
(�qj , ωj ), and Ej is the normalization coefficient.

By inserting Eqs. (5) and (6) into Eq. (3), the wave function
|�〉 evaluated from first-order perturbation theory can be

written as

|�〉 = ψ0

∫
d2qs

∫
d2qiEp(�qs + �qi)H (
kz,L)

× â†(�qs,ωs)â
†(�qi,ωi)|0〉. (7)

In this equation all the slowly varying terms and constants are
absorbed into ψ0. The pump term Ep(�qs + �qi) = e−|�qs+�qi |2w2

0/4

implies that the conservation of transverse momenta is fulfilled
in the SPDC process. And the phase-matching function
H (
kz,L) is

H (
kz,L) = sin(
kzL/2)


kz/2
≡ Lsinc(
kzL/2), (8)

in which 
kz = kpz − ksz − kiz. Under the assumption of
a monochromatic signal and idler photons, the longitudinal
components of wave vectors through Taylor expansions

are kz,o = ko − q2
o

2ko
for ordinary light and kz,e = ke(ω,θ ) +

∂ke(ω,θ)
∂ �qe

· �qe − q2
e

2ke(ω,θ) for extraordinary light at �q = 0 [27],

where ∂ke(ω,θ)
∂ �qe

= ω
c

∂ne

∂ �qe
= ω

c
∂θ
∂ �qe

∂ne

∂θ
(ne is the refractive index

of extraordinary light and θ is the angle between �ke and the
optic axis). It is notable that the walk-off effect of extraordinary
light generally brings the spatial distinguishability of photon
pairs in type II phase matching under the focused pump [15].
However, in the current discussion, the walk-off term in kz,e

can be neglected based on type II noncritical phase matching.
This gives


kz = kp,z − ks,z − ki,z

= kp − ks − ki − q2
p

2kp

+ q2
s

2ks

+ q2
i

2ki

. (9)

Here we suppose that the transverse momentum is relatively
small and meets the paraxial approximation. Also, the wave
vectors of the pump, the signal, and the idler under the zero-
order Taylor expansions are matched, namely, kp − ks − ki =
0, the mismatching of wave vectors along the z axis is


kz = 1

2αkp

|�qs − α�qi |2, (10)

where α = ks/ki > 0 determines the ratio between the signal’s
and the idler’s transverse momenta.

Inserting Eq. (10) into Eq. (7) gives

|�〉 = ψ0L

∫
d2qs

∫
d2qie

− |�qs+�qi |2
4 w2

0 sinc
|�qs − α�qi |2L

4αkp

× â†(�qs,ωs)â
†(�qi,ωi)|0〉. (11)

Similar expressions can also be found in Refs. [14,16–18],
however, here the general two-photon state is deduced under a

focused Gaussian pump. The pump function Ep = e− |�qs+�qi |2
4 w2

0

in Eq. (11) tends to exhibit an anticorrelation in transverse
momentum, while the term of the phase-matching function
H = sinc |�qs−α�qi |2L

4αkp
tends to exhibit a positive one. Obviously

the momentum or spatial correlation of the entangled two-
photon state is mainly determined by the pump function
and the phase-matching function. Under the condition of a
thin crystal and collimated pump, the momentum bandwidth
of the phase-matching function is much larger than that
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of the pump, so the generated two-photon state is mainly
determined by the pump beam and has an anticorrelation
in momentum. Specifically when the pump momentum’s full
width 4

w0
(when Ep drops to its 1/e) is much narrower than

that of the phase-matching function 4
√

απkp

L
(which is defined

as when the H function drops to its first zero point), that
is, 2z0 = w2

0kp � L
απ

or ξ = L/2z0 � απ , the two-photon
state shows a strong anticorrelation in momentum. In practical
experiments, the standard EPR state is achieved under this
condition [2,3]. For the case when the momentum bandwidth
of the phase-matching function is close to that of the pump,
it corresponds to a minimally entangled state and has been
studied for optimal single-mode coupling [18]. Both of these
cases have been well studied.

In this work we focus on the case where the bandwidth of
the phase-matching function is much narrower than that of the
pump. The momentum correlation will turn into a positive one.
This requires a long crystal and a tightly focused pump. The
relation limL→∞ sin(xL)/x = πδ(x) allows us to re-express
the phase-matching function H (
kz,L) in Eq. (11) as

lim
L→∞

H (
kz,L) = lim
L→∞

sin
( |�qs−α�qi |2

4αkp
L

)
|�qs−α�qi |2

4αkp

= 4παkpδ[(qsx − αqix)2 + (qsy − αqiy)2].

(12)

According to Eq. (12), the general entangled two-photon state
as shown in Eq. (11) becomes

|�〉 ∼
∫

d2qe−(1+α)2w2
0q

2/4â†(α�q,ωs)â
†(�q,ωi)|0〉. (13)

From Eq. (13), we can see that the two-photon wave packet
cannot be factorized. Once the transverse momentum of the
idler photon is detected at �q, the signal transverse momentum
is uniquely detected at α�q, so the above two-photon state
is a maximally entangled two-photon state with correlated
momentum, namely, a CEPR state. The spectrum function of
this state is only determined by e−(1+α)2w2

0q
2/4, which means

that the property of the pump’s angular spectrum can be
transferred to the produced photon pairs. On this point, the
case is somewhat similar to that in Ref. [14], in which the
longitudinal components of wave vectors are not conserved for
the case of a thin crystal and big beam waist of the pump and
only the transverse components of wave vectors are conserved,
then the correlation in transverse momentum between the
signal and the idler photons is still anticorrelated. However,
here both the longitudinal and the transverse components
of momenta are conserved, which is the key condition for
obtaining a perfectly correlated-momentum two-photon state
in Eq. (13). Figure 1(a) shows a comparison of phase-matching
conditions between the CEPR state and the EPR state.

Furthermore, when the beam waist of the pump w0 is
so small that the pump function Ep can be considered a
constant, Eq. (13) becomes |�〉 ∼ ∫

d �q|�q,�q〉 (α = 1), whose
momentum (position) correlation is just reverse to that of
the EPR state, so it is called an ideal CEPR state. The
physics implicated by this CEPR state is quite different from
that of the original EPR state. For the original EPR state,
two down-converted photons are born anywhere within the

k q
(a) ik

ksk
iq

pq
sq sk

iqsq
ik

pk

iksk pk iksk

(b)

xx
y

FIG. 1. (Color online) (a) Phase-matching conditions for the
CEPR (left) and EPR (right) states. (b) Illustrations of the momentum
and position correlations at the output surface of the crystal for the
CEPR (left) and EPR (right) states. Actually, for a pair of CEPR
photons, their emitting angles are always the same, but they can
have all possible values once we detect a pair of photons from two
fixed symmetric positions. Here, we only draw a possible angle, for
simplicity.

nonlinear crystal from the pump photon simultaneously, and
SPDC is considered to be a coherent process. When exiting
from the back face of the crystal, the photon pair has the
same transverse position but propagating aside the pump
with opposite transverse momentum [see Fig. 1(b), right].
The anticorrelated momentum of the original EPR entangled
corresponds to a positive correlation of the position at the
back face. Once one detects a photon at a certain position of
the back face of the crystal, the other should be located at the
same position. So the maximally entangled EPR state obeys

(�qs + �qi) = 0 and 
( �ρs − �ρi) = 0 simultaneously.

For the CEPR state, the signal and idler are anticorrelated
in the transverse position when they exit from the crystal.
Through the whole coherent SPDC process, each photon
pair can be considered as propagating along the parallel
direction but exiting with a centrosymmetric distribution in
position [see Fig. 1(b), left]. For the maximally entangled
CEPR state, it obeys 
(�qs − �qi) = 0 and 
( �ρs + �ρi) = 0
simultaneously. The difference in the physical picture be-
tween the CEPR state and the EPR state is clear now.
Because �qs ∓ �qi and �ρs ± �ρi are not conjugate variables,
they can simultaneously have exact values, which does
not violate the Heisenberg uncertainty principle, and their
product has been proved as a criterion of entanglement
[2,3,25]. Actually, for the practical engineering of the CEPR
state, since the crystal length cannot be infinitely long and the
beam width cannot be infinitely small, it is necessary to assure
that the phase-matching bandwidth is much narrower than that
of the pump so that


(�qs − �qi)
( �ρs + �ρi) < 1 (14)

is achieved. To verify the CEPR state, it is convenient to take
Eq. (14) as the criterion in experiments.
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III. THE POSITION CORRELATION OF THE CEPR STATE
AT THE OUTPUT CRYSTAL FACE

In this section, we study the position correlation of the
CEPR state analytically and numerically. We find a good
correspondence between the momentum and the position
correlations, i.e., the positive correlation (anticorrelation) of
the momentum corresponds to the anticorrelation (positive
correlation) of the position on the output surface of a nonlinear
crystal. The coincident counting rate Rcc at the output face is
calculated to be

Rcc = lim
T →∞

1

T

∫ T

0
dt1

∫ T

0
dt2|〈0|Ê(+)

1 (τ1)Ê(+)
2 (τ2)|ψ〉|2,

(15)

where Ê
(+)
1,2 refers to the positive-frequency component of the

free-space electromagnetic field triggered at detector D1,2.
τ1,2 = t1,2 − z1,2

c
, where z1,2 denotes the distance from the

output surface of the crystal to the plane of D1,2 and t1,2

represents the trigger time.
Suppose two detectors are set at the output

plane of SPDC, i.e., z1,2 = 0, Ê(+)(τ1,2) = ∑
�q1,2

eωâ

(�q1,2,ω1,2)ei �q1,2· �ρ1,2eiω1,2t1,2 . For simplicity, we only consider the
case where α = 1. Define �q± = �qs ± �qi and �ρ± = ( �ρs ± �ρi)/2.
Using Eqs. (11) and (15), the coincident counting rate of
photon pairs is calculated as

Rcc ∝
∣∣∣∣
∫

d �q+Ep(�q+)ei �q+· �ρ+

∣∣∣∣
2∣∣∣∣

∫
d �q−H (�q−,L)ei �q−· �ρ−

∣∣∣∣
2

.

(16)

It is clear that the two-photon probability is determined
by the Fourier transforms of the pump and the phase-
matching functions. The Fourier transform of the pump is∫

d �q+Ep(�q+)ei �q+· �ρ+ = 4π

w2
0
e−ρ2

+/w2
0 , and the Fourier transform

of the phase-matching function is
∫

d �q−H (�q−,L)ei �q−· �ρ− =
2πkp/L[π − 2Si(kpρ2

−/L)], where Si(x) ≡ ∫ x

0 sin(t)/tdt . So
the coincident counting rate of photon pairs under the
noncritical phase-matching condition is

Rcc ∝ e−| �ρs+�ρi |2/2w2
0

(
π − 2

∫ kp | �ρs−�ρi |2
4L

0
sin t/tdt

)2

. (17)

Figure 2 is a numerical evaluation of the position and
momentum correlations under a tightly focused pump with
ξ = 35.81, respectively. The crystal length L = 5 cm and
the beam waist w0 = 10 μm. We take the SPDC pro-
cess of 792 nm (no = 1.759) −→ 1584 nm (no = 1.736) +
1584 nm (ne = 1.815) (α = 1.05) at T = 20◦C in a KTP
crystal as the example. no or ne is the refraction index of
the pump or entangled photons with o polarization or e
polarization. In this case we found that the momenta of a
photon pair are positively correlated [see Fig. 2(a)] and the
corresponding position correlation shows an anticorrelation
[see Fig. 2(b)]. In Fig. 2(a) we also depict the two-photon
momentum amplitude A for qsx = qix [solid (red) line] and
qsx = −qix [dotted (green) line], which reveals the pump
mode function E and phase-matching function H in Eq. (11),
respectively. As shown in Fig. 2(a), the anticorrelated mo-
mentum results from the fact that the bandwidth of the pump

FIG. 2. (Color online) Numerical evaluation of the momentum
(a) and position (b) correlations under the condition of ξ = 35.81
(crystal length L = 5 cm and beam waist w0 = 10 μm). Both the two-
photon amplitude A(qsx,qix) and the coincidence counting rate Rcc are
drawn along the x axis, for an obvious comparison of the bandwidth
between the pump function and the phase-matching function. We also
plot the momentum correlation by setting qsx = qix [solid (red) line]
and qsx = −qix [dotted (green) line] as shown at the right in (a), where
A represents the logogram of the two-photon momentum amplitude
A(qsx,qsi) of Eq. (11). The position correlation is similarly plotted
by setting ρsx = ρix [solid (red) line] and ρsx = −ρix [dotted (green)
line] as shown at the right in (b).

is much narrower than that of the phase-matching function.
Also, when depicting the two-photon counting rate Rcc by
choosing ρsx = ρix [solid(red) line] and ρsx = −ρix [dotted
(green) line], which corresponds to the Fourier transforms of
the pump function and phase-matching function as shown in
Eq. (17), respectively, we found that the bandwidth of the
Fourier transform of the pump function is narrower than that
of the Fourier transform of the phase-matching function, so
the position correlation is anticorrelated. Here, it is valuable to
note that the parameters L and w0 in the above numerical eval-
uation still satisfy the noncritical phase-matching condition in
Sec. II. For experimental engineering of the CEPR state, some
nonlinear crystals with small birefringence are preferred.

IV. THE ENTROPY OF ENTANGLEMENT

In order to quantify the degree of entanglement of the
CEPR state, we use the Schmidt decomposition method
[28,29]. According to Eq. (11), the two-photon amplitude
is A(�qs,�qi) = E(�qs + �qi)H (�qs − �qi,L) (α = 1). The Schmidt
decomposition of A(�qs,�qi) corresponds to the signal-sum
expansion, i.e., A(�qs,�qi) = ∑n=∞

n=0

√
λnμn(�qs)νn(�qi), where

μn(�qs) and νn(�qi) are Schmidt modes defined by eigenvectors
of the reduced density matrices for the signal and idler photons,
respectively, and λn are the corresponding eigenvalues. Then
the entanglement entropy S = −∑

n λn log2 λn. For simplic-
ity, we only consider the transverse momentum along the
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FIG. 3. (Color online) The entanglement entropy S changes with
the focal parameter ξ = L/(w2

0kp) for L = 5 cm.

x axis; the calculation of the entanglement entropy is about
a scalar quantity and becomes simple.

By the numerical tool for calculating the entropy of
entanglement in systems with continuous degrees of freedom
[29,30], entropies of entanglement S are calculated and
plotted in Fig. 3 (for a summary of mathematical details, see
Ref. [29]). We found that the entropies of entanglement S

are uniquely determined by the focal parameter ξ despite the
actual dimensions of L and w0, which is consistent with the
results in Refs. [18,30]. The demarcation point for the EPR
state and CEPR state is ξ = 1.32, which corresponds to the
minimally entangled state [18]. For ξ < 1.32, the two-photon
state tends to be an EPR state. An ideal EPR state is achieved
when ξ � 1.32. For CEPR-state generation, we may choose
ξ > 1.32. Especially when ξ � 1.32, an ideal CEPR state can
be prepared.

It is worth emphasizing that it is difficult to engineer a
CEPR state with the same high degree of entanglement as
an EPR state. For EPR-state generation we may choose a
pump beam waist w0 = 1 mm and a crystal length L = 2 mm;
in this case ξ = 1.5 × 10−4, and the entanglement entropy
is as high as 4.64. For the perfect CEPR-state generation, a
long crystal is preferred, while the beam waist of the pump
has been minimized to a certain value. In fact, the crystal
cannot be infinitely long, or else the third term in the Taylor

expansion of kpz =
√

k2
p − q2

p cannot be neglected, so we have

q4
pL/8k3

p � 1. Take the maximum value of qmax = 2/w0; this
gives that the crystal length L � k3

pw4
0 or the focal parameter

ξ � 2π2(w0/npλ)2 (np is the refractive index of the pump in
the crystal). All the parameters we used satisfy this condition.
For a reasonable experimental parameter, it is clear that when
the crystal length is chosen at several centimeters, one can get
a relatively high degree of spatial entanglement. As shown in
Fig. 3, for example, if we choose the crystal length L = 5 cm,
the entropy S can be as high as 2.13 when the beam waist of
the pump is chosen as w0 = 10 μm.

V. QUANTUM GHOST IMAGING BASED
ON THE IDEAL CEPR STATE

Besides the fundamental interest in the CEPR state, its
potential applications are diverse due to its new characteristics

Coincidence
Circuit

os

crystal

object

bucket
detector

BS

lens

pump

1D

2D

B

is

FIG. 4. (Color online) Sketch of the setup for quantum imaging.
The CEPR photon pair is beam-split into two paths. A lens is placed
in the reflected path and the object followed. Bucket detector D1

captures all photons passing through the object, and point detector
D2 scans in the transmitted path. The distance between the object and
the lens is termed So. While the distance between the lens and the
crystal plus the distance between the crystal and the second detector
is called Si .

in momentum and position correlations. Quantum imaging is
calculated when using the CEPR state. The schematic for the
setup of quantum ghost imaging is shown in Fig. 4. When
doing coincidence counting between two detectors, the image
will be retrieved. The electric field at the mth detector can be
described by Green’s function Gm(m = 1,2), which describes
the propagation of the beam through the optical system [27].
The two-photon amplitude is

A( �ρ1, �ρ2) =
∫

d �q1

∫
d �q2e

−i(ω1t1+ω2t2)G1(�q1,ω1; �ρ1,z1)

×G2(�q2,ω2; �ρ2,z2)〈0|â(�q1,ω1)â(�q2,ω2)|�〉,
(18)

where G1(�q1,ω1; �ρ1,z1) = ∫
d �ρs1

∫
d �ρf hω( �ρ1 − �ρf ,so)S( �ρf )

hω( �ρf − �ρs1,z1 − so)ei �q1· �ρs1 and G2(�q2,ω2; �ρ2,z2) = ∫
d �ρs2hω

( �ρ2 − �ρs2,z2)ei �q2· �ρs2 , in which the optical transfer function

hω is defined as hω( �ρ,z) = −iω
2πc

ei ωz
c

z
ei

ωρ2

2cz in the paraxial

approximation, and S( �ρf ) = e
−i

ωρ2
f

2cf t( �ρf ). so represents the
distance between the object and the lens, and �ρs1(2) denotes
position 1 or 2 of the crystal back face. �ρ1,2 (�q1,2) represents the
transverse position (momentum) of the first or second detector,
respectively. z1,2 represents the distance between the first or
second detector and the corresponding position at the back
face of the crystal.

Assume that the lens in the object path is infinite and its
transmitting function t( �ρ) = 1, the two-photon amplitude in
Eq. (18) becomes

A12 ∝ δ

(
�ρ1 − So

Si

�ρ2

)
, (19)

where 1
So

+ 1
Si

= 1
f

[So(i) is marked in Fig. 4] is satisfied, and
Si

So
represents the magnification of the object. It is noticeable

that quantum imaging using CEPR two-photon pairs is an
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is

f

Object Lens Image

2D
1D

os

FIG. 5. (Color online) The conceptual “unfolded” version of
quantum imaging using CEPR photon pairs (erect image) and EPR
photon pairs (headstand image). So and Si represent distances of the
object and image, respectively.

upright one, which is different from the headstand imaging
using original EPR photon pairs. When the lens is placed
satisfying the imaging condition given by the thin lens formula
1
So

+ 1
Si

= 1
f

, the image is well produced in the joint detection
(see Fig. 4). Considering quantum imaging using original EPR
photon pairs, the advanced wave picture states that the crystal
plays the role of a reflecting mirror in the imaging process. This
is guaranteed by the anticorrelated momentum and correlated
position of the entangled photon pair as shown by the unfolded
layout in Fig. 5 (dashed line) [5]. The unfolded ghost imaging
by CEPR photon pairs is also shown in Fig. 5 (solid line), the
anticorrelated-position and correlated-momentum result in an
upright image, which also embodies the calculating process of
Eq. (19). Here, it is notable that the upright image can serve
as a criterion for the CEPR state existing in experiments. Just

as calculated in Ref. [25], when the object is a symmetric
double slit, the ghost image cannot distinguish the CEPR
state and the EPR state. But for a nonsymmetric object or
an object deviating from the pump’s center, the ghost image
using two types of states is different. However, as discussed
in Sec. IV, the generation of a CEPR state with a high degree
of entanglement is not easy; this may reduce the resolution in
quantum imaging.

VI. CONCLUSION

In summary, in this paper we propose to engineer the
counterpart of the EPR state directly from nonlinear crystals.
The pump focal parameter uniquely determines the wave
function, momentum, and position correlations and the en-
tanglement entropy of such CEPR photon pairs. This type of
CEPR state may attract fundamental interest and stimulate
possible applications in quantum technology and quantum
information science. For quantum imaging, we calculate and
find an erect ghost imaging based on this CEPR state. Other
new applications are still under investigation.
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