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Manipulation of a two-photon state in a χ (2)-modulated nonlinear waveguide array
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We propose to engineer the quantum state in a high-dimensional Hilbert space by taking advantage of a
χ (2)-modulated nonlinear waveguide array. By varying the pump condition and the waveguide array length,
the momentum correlation between the signal and idler photons can be manipulated, exhibiting bunching,
antibunching, and the evolution between these two states, which are characterized by the Schmidt number. We
find the Schmidt number is dependent on a structure parameter, namely the ratio of the array length and the
number of channels pumped. By designing the linear profile waveguide array, the degree of spatial entanglement
shows a periodic relationship with the slope of linear profile, during which a high degree of position-bunching
state is suggested. The two-photon self-focusing effect is disclosed when the χ (2) modulation in the waveguide
array contains a parabolic profile, which can be designed for efficient coupling between a waveguide array and
fibers. These results shed light on a feasible way to achieve desirable quantum state on a single waveguide chip
by a compact engineering of χ (2) and also suggest a degree of freedom for quantum walk and other related
applications.
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I. INTRODUCTION

Photonic waveguide array (WA) supplies a unique platform
for the study of the linear or nonlinear optical phenomena [1].
The periodicity of refraction index and nonlinearity enable one
to mould the flow of light, exhibiting the diffraction behavior
characteristic of that encountered in discrete systems [2].
Bloch oscillations [3–5], discrete solitons [6,7], Talbot effect
[8], dynamic localization [9–12], Rabi oscillations [13,14],
etc., have been observed in waveguide arrays. Recently,
the WA is introduced into the field of quantum walk to
demonstrate the continuous quantum walk of single-photon
and entangled photon pairs [15–17]. These studies will
promote the applications of quantum walk in the design
and implementation of quantum algorithms. In 2011, another
type of quantum walk was proposed [18]. By designing
the quadratic χ (2) WA, the entangled photon pairs can be
generated and coupled during the spontaneous parametric
down conversion (SPDC) process, which dispenses with the
external single- or multiphoton source and results in peculiar
properties of quantum walk. From a different perspective, the
χ (2) WA presents the prospects in engineering the quantum
state in high-dimensional Hilbert space, by either changing the
amplitude or phase profile of the pump. The χ (3) WA was also
suggested for engineering the entangled photons, leading to
different characters of quantum walk [19]. Then spatiospectral
properties of SPDC in WA were further considered [20].

In this paper, we propose to engineer the quantum state
by taking advantage of a χ (2)-modulated nonlinear waveguide
array, wherein the longitudinal χ (2) modulation ensures the
quasi-phase-matching (QPM) condition of the SPDC process
for the entangled photons generation, while the transverse
χ (2) modulation supplies a unique way to manipulate the
two-photon spatial correlation. By verifying the profile of
the initial position of each χ (2)-modulated waveguide, the
transverse χ (2)-modulation function will be transferred into a
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two-photon mode function, resulting in two-photon bunching,
antibunching, the evolution between them, or a self-focusing
effect. By calculating the Schmidt number, the entanglement
degree of the engineered state is evaluated, showing a
characteristic relationship with the WA length and the pump
parameters. Following this way, the high degree of spatial
entanglement is suggested. This work sheds light on a feasible
way to achieve desirable quantum state on a single chip by a
compact engineering of χ (2). This also suggests another degree
of freedom for quantum walk and other related applications.

This paper is organized as follows. In Sec. II, the general
two-photon state in a χ (2)-modulated nonlinear waveguide
array is given. In Sec. III, the manipulation of spatial cor-
relation for the photon pair is achieved by changing the pump
condition and the waveguide array length. The degree of spatial
entanglement is characterized by the Schmidt number. In
Sec. IV, the WA with linear profile χ (2) modulation is studied,
during which a high degree of a position-bunching state is
suggested. In Sec. V, the parabolic profile of χ (2) modulation is
discussed, which leads to the two-photon self-focusing effect
outside the waveguide array. Discussions about the loss are
given in Sec. VI and conclusions are drawn in Sec. VII.

II. GENERAL TWO-PHOTON STATE FROM A
χ (2)-MODULATED NONLINEAR WAVEGUIDE ARRAY

First of all, we will give a general form of the two-photon
state from a χ (2)-modulated nonlinear waveguide array. The
WA is designed as follows. The WA substrate material
can be lithium niobate (LN) or lithium tantalate (LT), etc.
These materials can be fabricated into waveguides by using
either a proton-exchange or titanium-diffusion method. More
importantly, such material can be domain engineered, i.e., χ (2)

modulation is allowed to supply an additional “momentum”
for satisfying the momentum conservation during the SPDC
process for the entangled photons generation, namely a
quasi-phase-matching (QPM) condition. The period of χ (2)

modulation can be designed to match the requirement for
different wavelength photons within the wide transparent
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FIG. 1. (Color online) Sketch of the χ (2)-modulated nonlinear
waveguide array is given. The deep blue areas are proton-exchanged
waveguide channels and the red shows the domain reversal area. The
red curved line is the initial position profile of the domain.

window of LN or LT materials. Here in this work we assume
the WA is periodically poled along the propagation direction,
while the initial position of each waveguide is engineered
according to certain functions. The χ (2) modulation in such
WA is generally described as

χ (2)(z,x0) = U (x0)deff

∑
m

F (Gm)eiGm[z+f (x0)], (1)

where n represents the no. n waveguide channel. Gm = 2mπ
�

is the m-order reciprocal vector resulting from the periodic
modulation of χ (2) with a period of � along the z direction.
Here only G1 is competent for the QPM SPDC process. deff

is the effective second-order nonlinear susceptibility. U (x0)
denotes the amplitude profile for transverse χ (2) modulation.
Here we assume U (x0) is constant. F (Gm) is the Fourier
coefficient. f (x0) is the initial position profile of the domain
(the red curved line shown in Fig. 1). We will discuss
the two-photon state under different f (x0) in the following
sections. The interaction Hamiltonian in the above WA can be
described as

HI =
∑

n

∫
dz χ (2)(z,x0)E(+)

p,nE
(−)
s,n E

(−)
i,n + H.c. (2)

E(+)
p,n,E

(−)
s,n ,E

(−)
i,n are the pump, signal, and idle field, respec-

tively, in the no. n waveguide, where the pump is considered as
a classical field while the signal and idler are treated quantum
mechanically,

E(+)
p,n =

∫
dκpAp(κp)einκpeiβpz−iωpt , (3)

E
(−)
s(i),n =

∫
dκs(i)e

inκs(i)e−iβs(i)z+iωs(i)t â
†
s(i)(κs(i)), (4)

where κp,s,i = kp,s,id is the reduced transverse wave vec-
tor which is the product of transverse wave vector
kp,s,i and the transverse separation d of WA. Ap(κp) =
[sinc( w

d
κp)comb(κp)] ∗ sinc[Nκp] is the pump mode function

which is the Fourier transform of the pump condition, namely
Ap(x0) = [rect( x0

w
) ∗ comb( x0

d
)]rect[ x0

Nd
]. N is the total number

of pumped waveguide channels and w is the width of every
waveguide channel. βp,s,i is the longitudinal wave vector as a
function of reduced transverse wave vector κp,s,i and frequency
ωp,s,i ,

βs,i = β(0)(ωs,i) + 2Cs,i cos(κs,i). (5)

Cs,i is a coupling parameter of the waveguide for the signal
or idler photon. β(0)(ωs,i) = neff(ωs,i)ωs,i/c is the propagation

constant defined by the effective refraction index neff(ωs,i) in
the waveguide. For the pump, the evanescent wave coupling
between adjacent waveguides is neglected. By the second
quantization method and Bloch waves basis expansion in the
WA, the two-photon state is obtained,

|�〉 ∼
∫ ∫

dκsdκiAp(κs,κi)e
iG1f (x0)sinc

(
	βL

2

)

× e−i
	βL

2 â†
s â

†
i |0,0〉. (6)

L is the length of the array. 	β = 	β0(ωs,ωi) −
2Cs cos(κs) − 2Ci cos(κi) is the phase mismatch. Here we
consider the type-0 degenerate SPDC process, which means
the signal and idle photon share the same frequency and
polarization, so Cs = Ci = C. The zero-order phase mismatch
	β0(ωs,ωi) = β0(ωp) − β0(ωp) − β0(ωp) − G1 is designed
to be zero. Then the phase mismatch is reduced into 	β =
4C cos( κs+κi

2 ) cos( κs−κi

2 ).

III. SPATIAL CORRELATION OF TWO-PHOTON STATE
IN THE HOMOGENEOUS WAVEGUIDE ARRAY

Here, we consider a homogeneous WA, i.e., f (x0) = 1. The
two-photon amplitude ϕ(κs,κi) = Ap(κs,κi)sinc(	βL

2 )e−i
	βL

2 ,
describing the spatial correlation between entangled two
photons in the WA, shows a joint connection between the
pump mode function and phase-mismatching term. When only
considering the first Brillouin zone of the signal and idler, the
pump condition gives a momentum antibunching correlation
following κs + κi = 0 when the N → ∞, while the phase-
mismatching term presents either bunching or antibunching
correlation by requiring κs + κi = ±π or κs − κi = ±π when
L → ∞. For a practical case, the dominant bunching or
antibunching effect is decided by a comparison between the
bandwidth of the pump term and that of the phase-mismatching
term, which are determined by the number of waveguides N

and the length L of WA. For a fixed N or L, verifying L or N

will bring a continuous evolution from two-photon bunching
to an antibunching state.

Figure 2 shows the momentum correlation with different
WA lengths L = 0.3Lz,0.9Lz,4Lz (Lz is the coupling length
for two adjacent waveguides). The pump is assumed to cover
n = 0, ± 1, ± 2,3 waveguides. The first column of Fig. 2
shows the signal-idler momentum anticorrelation decided by
the pump condition. The second column presents a phase-
mismatching term [sinc term in Eq. (6)]. The bandwidth
of κs + κi or κs − κi is obviously getting smaller when
the WA’s length increases as shown in the middle column
of Fig. 2. The product of the pump mode function and
phase-mismatching term shows an evolution from antibunch-
ing to bunching in momentum space, which is depicted
in the right column of Fig. 2. This phenomenon tells us
that the spatial correlation varies for different propagation
lengths of WA.

To be more vivid, the Schmidt number K = 1∑
m λ2

m
(where

λm is the eigenvalue of reduced density matrices for a photon
pair expanded by Schmidt modes) [21,22] as a function of
the ratio L/Lz with different pump conditions is described
as shown in Fig. 3. In this numerical simulation, a method
for calculating the Schmidt number [23] is applied. As
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FIG. 2. (Color online) Pump condition, phase mismatch, and the momentum correlation is demonstrated when the pump condition is
n = 0, ± 1, ± 2,3 under three array lengths L = 0.3Lz,0.9Lz,4Lz.

shown by Ref. [23], the Schmidt number can be described
as K = X2

Y
, where X = ∫

dκs

∫
dκi |ϕ(κs,κi)|2 and Y =∫

dκs

∫
dκi

∫
dκ ′

s

∫
dκ ′

i [ϕ(κs,κi)ϕ(κ ′
s ,κ

′
i )ϕ

∗(κs,κ
′
i )ϕ

∗(κ ′
s ,κi)].

According to Fig. 3, the entanglement degree of the photon

FIG. 3. (Color online) Schmidt number is given as a function of
ratio L/Lz when the number of pumped waveguide channels N varies
from 16 to 21.

pair decreases first and then increases as the length of the array
enlarging. And the minimal Schmidt number stands for the
near-uncorrelated photon pair state, namely the entanglement
degree is lowest. Besides, as the number of pumped waveguide
channels increases (N turns larger), the near-uncorrelated
point shifts to a larger length of the array. This phenomenon
can be explained as follows: as suggested from Refs. [21]
and [24], the near-uncorrelated condition corresponds to a
comparative bandwidth between the pump mode function
and the phase-mismatching term. Since they both follow the
monotonous relationship with N or L, therefore, when N

increases, the near-uncorrelated condition moves to a larger
L/Lz. From Fig. 3, to engineer the bunching or antibunching
state, for a fixed N , we prefer an extremely short or a long
WA.

In Figs. 4(a) and 4(b), by choosing the single structure
parameter, namely the ratio of the array length and the number
of channels (L/Lz)/N , we find the unique dependance of
Schmidt number on this parameter, i.e., no matter the absolute
value of L/Lz and N , the Schmidt number is only decided
by the ratio of them. The Schmidt number always decreases
first and then increases as the ratio enlarging. The smallest
Schmidt number corresponding to a near-uncorrelated state
for odd N is approached when the ratio reaches around 0.15.
For even N , although the Schmidt number shows a similar
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FIG. 4. (Color online) Schmidt number is given as a function of
the ratio (L/Lz)/N when the number of pumped waveguide channels
N varies from 8 to 17. The Schmidt number for odd and even N is
plotted separately.

dependance on the structure parameter as the case of odd N ,
they do not overlap. Meanwhile, for different N (even), the
Schmidt number differs a little. These differences may result
from the different pump mode functions. From Fig. 4(b), we
also know when N (even) is getting larger, the Schmidt number
tends to show a unique dependance on the ratio (L/Lz)/N ,
which is similar with the odd N case.

IV. TWO-PHOTON SPATIAL CORRELATION IN THE
LINEAR PROFILE WAVEGUIDE ARRAY

In this section, we consider the initial position of χ (2)

modulation is a linear function of n,

f (x0) = ax0. (7)

a describes the slope of such titled WA and x0 = nd is discrete.
Then the two-photon state has the following form:

|�〉 ∼
∫ ∫

dκsdκi

∑
n

e−in(κs+κi+G1ad)sinc

(
	βL

2

)

× e−i
	βL

2 â†
s â

†
i |0,0〉. (8)

As discussed before, the phase-mismatching function
inherently sets a constraint to the relationship between
κs and κi which is antibunching or bunching. In this
case, the pump mode function

∑
n e−in(κs+κi+G1ad) turns

to 2π
∑

M δ(κs + κi + G1ad − 2πM). Specifically
when G1ad is designed to be π , we achieve
2π

∑
M δ(κs + κi + π − 2πM), namely κs + κi = ±π for

M = 0,1 in the first Brillouin zone, which overlaps with the
antibunching relation determined by the phase-mismatching
function as shown by the upper two pictures of Fig. 5. The
momenta of the signal and idler photon are then anticorrelated.
The position of the photon pair, calculated by G(2)(ns,ni) =
| ∫ ∫

dκsdκie
iκsns eiκini Ap(κs,κi)sinc( 	βL

2 )e−i
	βL

2 |2 should
be correlated. The corresponding momentum and position
correlations of the photon pair are demonstrated by the
lower two in Fig. 5, which exhibit a well-defined momentum
antibunching and position bunching effect. When compared
with the homogeneous WA, the sum of signal and idler
momentum is shifted by G1ad, which brings different
characters to the spatial correlation. By evaluating the

FIG. 5. (Color online) Momentum and position correlation of a
two-photon state generated from the WA with linear domain profile.

Schmidt number as a function of G1ad in Fig. 6, we find the
Schmidt number represents itself periodically. The period is
2π , which is consistent with the periodicity of pump mode
function in Eq. (8). The Schmidt number approaches as high
as 21.82. This suggests a feasible way to engineer a high
degree of spatial entanglement. As proposed in Ref. [18], the
high degree of position antibunching state can be achieved
by pumping no. 0 and no. 1 waveguide channels (here we
calculate the Schmidt number to be 8.01). But the high-degree
position bunching state can hardly be approached by just
choosing different pumping channels or setting the phase
difference between them. The slope of linear profile a supplies
as an alternative a parameter to engineer the two-photon state
from the WA, especially for the high degree of the position
bunching state.

FIG. 6. Schmidt number when the slope of the linear profile
increases with all waveguide channels pumped and the length of
the array is L = 10Lz.
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V. TWO-PHOTON SPATIAL CORRELATION IN A
PARABOLIC PROFILE WAVEGUIDE ARRAY

Now we discuss another type of transverse domain mod-
ulation. When the transverse profile is parabolic following
f (x0) = bx2

0 , the two-photon state turns to

|�〉 ∼
∫ ∫

Ap(κs,κi)e
iG1bx2

0 sinc

(
	βL

2

)
e−i

	βL

2 â†
s â

†
i |0,0〉.

(9)
Here we consider all the channels are pumped. According to
Glauber’s theory, the spatial coincidence counts outside the
WA are calculated following

Rc.c.(x,z) ∝ 〈�|E(−)
1 E

(−)
2 E

(+)
2 E

(+)
1 |�〉, (10)

where E
(+)
2 ,E

(+)
1 represents the field received by the single-

photon detector 1 or 2 for the signal or idler photon after
propagating a distance z from the back face of the WA. And
these fields are written as

E
(+)
1 (x1,x0) =

∫ ∫
dω1dκ1e

−iω1t1
e

iω1z

c

z

×
∫

dx0e
iκ1x0ei

ω1
2cz

(x1−x0)2
â1, (11)

E
(+)
2 (x2,x

′
0) =

∫ ∫
dω2dκ2e

−iω2t1
e

iω2z

c

z

×
∫

dx ′
0e

iκ2x
′
0ei

ω2
2cz

(x2−x ′
0)2

â2. (12)

These two fields are annihilated at space-time points (x1,t1)
and (x2,t2), respectively. By substituting Eqs. (9), (11), and
(12) into Eq. (10), we get

Rc.c. =
∣∣∣∣
∫

dx0Ap(x0)ei(
ωp

2cz
−G1b)x2

0 e−i
ωp

cz
xx0

∣∣∣∣
2

. (13)

When z = ωp

2cbG1
, we get

Rc.c. =
∣∣∣∣
∫

dx0Ap(x0)e−i
ωp

cz
xx0

∣∣∣∣
2

. (14)

Specifically, we have

Rc.c. ∼
{

|sinc( bwG1
π

x)comb( bdG1
π

x)|2 for infinite N,

|[sinc( bwG1
π

x)comb( bdG1
π

x)] ∗ sinc(NbdG1
π

x)|2 for finite N.
(15)

This indicates that when the two detectors locate in the
plane z = feff = ωp

2cbG1
, defined as the self-focusing plane,

the photon pair will focus into a series spot, meaning a high
two-photon probability in these spots. The number of focused
spots depends on the ratio of d and w mathematically. Usually,
d cannot be too large since an efficient coupling between
adjacent waveguides is required here; therefore, only several
two-photon focusing spots can be observed. This two-photon
self-focusing effect after the parabolic WA can be utilized to
connect the WA and fibers by properly designing the effective
focusing length.

VI. DISCUSSION

When considering the practical engineering of quantum
states from the nonlinear WA, the loss should be taken into
account since the loss may affect the degree of entanglement.
Actually the loss in the nonlinear WA may lie at three aspects.
First, the coupling loss of the pump when it is guided into
the chip. For a linear WA, the entangled photons are seeded
externally and experience such coupling loss inevitably. This
will decrease the coincidence counting rate and even the
fidelity of a quantum operation, while for the nonlinear WA,
the entangled photon pairs are generated inside the chip and
the loss only decreases the pump energy and therefore the
photon pair rate, but will not affect the coincidence counting
rate, which shows the advantage of nonlinear WA over the
linear one. Secondly, the propagation loss in the waveguide
exists. This is mainly decided by the fabrication technology.
Unless the propagation loss reaches a low value [25,26], the

two-photon amplitude in each waveguide can be considered
identical, which will meet the requirement in the theoretical
model. The third type of loss comes from the nonlinearity
engineering. The domain engineering will definitely introduce
some inhomogeneity or defects, thus causing some loss. But
according to some experiments [27,28], the engineering loss
in each waveguide can be considered as the same since it has
been testified for transforming the spatial entanglement, and
thus will not bring obvious impacts on the two-photon state.

VII. CONCLUSION

In this work, the χ (2)-modulated LN or LT waveguide
array is proposed as a specific platform for engineering
the two-photon state in a high-dimensional Hilbert space.
By varying the pump condition and the WA length, the
momentum correlation between the signal and idler photon
can be manipulated, resulting in bunching, antibunching, and
the evolution between these two states. The Schmidt number is
calculated as a characterization of the degree of entanglement.
We find a single structure parameter (L/Lz)/N which uniquely
determines the degree of entanglement especially for odd
N and large even N . The degree of spatial entanglement
shows the relevance with the linear profile of χ (2) modulation,
in which a high degree of the position-bunching state is
suggested. Furthermore, the two-photon self-focusing effect
is disclosed when the χ (2) modulation in the WA contains a
parabolic profile. These results indicate an on-chip engineering
of the two-photon state in the WA dispensing with additional
dealing of the pump beam, which will play the key role in the
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integrated quantum optics. Besides, such WA array can further
be designed to engineer photons’ other degrees of freedom,
permitting the generation, transmission, and manipulation of
photons to be accommodated on a single chip [29,30].
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