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Lensless imaging by entangled photons from quadratic nonlinear photonic crystals
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Lenses play a key role in quantum imaging but inevitably constrain the spatial resolution and working
wavelength. In this work we develop and demonstrate a lensless quantum ghost imaging by engineering quadratic
nonlinear photonic crystals. With a transverse parabolic domain modulation introduced into the lithium tantalate
crystal, the entangled photon pairs generated from parametric down-conversion will self-focus. Therefore we can
dispense with additional lenses to construct imaging in a nonlocal way. The lensless imaging is found to follow
a specific imaging formula where the effective focal length is determined by the domain modulation and pump
wavelength. Additionally, two nonlocal images can be retrieved when the entangled photon pair is generated
under two concurrent noncollinear phase-matching geometries. Our work provides a principle and method to
realize lensless ghost imaging, which may be extended to other wavelengths and stimulate new types of practical
quantum technologies.
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I. INTRODUCTION

Developing advanced imaging techniques is of essential
importance to human daily life and the scientific world.
As one of the latest achievements of quantum mechanics,
quantum imaging emerges with great advantages over the
classical imaging. By using the quantum nature of entangled
photons [1–8] or entangled beams [9–12], quantum imaging
can surpass classical imaging with higher resolution and better
sensitivity. In addition, quantum imaging is nonlocal. The im-
age is constructed by joint detection between a beam that never
interacts with the object and one that does. This ghost imaging
was first demonstrated by using entangled photons in 1995 [1].
Since then, ghost imaging has drawn considerable attention
due to its fundamental interest and potential applications. In
practical implementations of quantum ghost imaging, the lens
plays a key role in conveying the information from objects to
images. But lenses severely constrain the spatial resolution
and present engineering challenges at some wavelengths.
Consequently, developing a lensless ghost imaging system is
an important goal in quantum imaging science.

Here we develop and demonstrate lensless quantum imag-
ing by engineering quadratic nonlinear photonic crystals
(NPCs). The NPC offers high-efficiency nonlinear interac-
tions in a quasi-phase-matching (QPM) way [13,14], and
specifically a two-dimensional NPC [15,16] shows particular
functionalities in the spatial control of second-harmonic beams
[17–19] and entangled photons [20–22]. Very recently, a
two-photon lens based on the transverse parabolic NPC was
studied theoretically and experimentally [21,22]. In that case,
the longitudinally periodic modulation of χ (2) ensures the
generation of entangled photon pairs by QPM spontaneously
parametric down-conversion (SPDC), while in the transverse
parabolic domain modulation, the crystal can tailor the wave
front of the two photons, acting as an equivalent lens. In this
work we investigate the two-photon lens and experimentally
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demonstrate lensless quantum ghost imaging. The schematic
layout for this lensless imaging is displayed in Fig. 1. When
an object is put into one of the down-converted photon paths,
by coincidence measurement the image can be reconstructed
in the other down-converted path. No lens is required in this
setup and even no beamsplitter is required when the signal and
idler photon propagate noncollinearly. Furthermore, we obtain
two lensless ghost images simultaneously under concurrent
noncollinear QPM geometries in a multistripe parabolic NPC.
This lensless quantum imaging presents a way to improve the
resolution which is conventionally restricted by the size of lens,
and offers a principle for engineering an equivalent lens by
nonlinear interaction, hence it may be beneficial at frequencies
where we do not have efficient ways of manufacturing lenses,
such as x-rays.

The paper is organized as follows. Section II includes
the mathematical description of the NPC’s structure and
theorectical calculations on the imaging formula for entangled
photons from the NPC. In Sec. III, the experimental results of
the single lensless ghost image and doule lensless ghost images
are given. In Sec. IV, the two-color lensless ghost imaging is
discussed. The conclusion is drawn is Sec. V.

II. THEORETICAL CALCULATIONS
ON THE IMAGING FORMULA

A. Description of the parabolic NPC

The quadratic nonlinear coefficient of parabolic NPC is
expressed by

χ (2)(x,z) = d33sgn{cos[2π (z + αx2)/�]}, (1)

which indicates the maximum nonlinear coefficient d33 is
utilized and its sign changes when the domain is inverted.
The longitudinal domain modulation period is � and the
width of the positive domain is equal to that of the neg-
ative domain, while the transverse modulation follows the
function z = −αx2. The Fourier expansion of χ (2)(x,z) is
d33

∑
n F (gn)eign(z+αx2), where gn = n 2π

�
(n = ±1, ± 2, . . .)

represents the nth-order reciprocal vector and F (gn) is its
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FIG. 1. (Color online) The schematic setup of lensless ghost
imaging based on a multistripe parabolic NPC. The solid “face”
represents the object and the dotted one represents the image.

corresponding Fourier coefficient. The entangled photons are
generated under the QPM condition kp − ks − ki + gn = 0
along the propagation direction in which kp , ks , and ki are wave
vectors of the pump, signal, and idler, respectively. Along the
x axis it is interesting to find that the wave front of entangled
photon pairs takes a parabolic profile eignαx2

. Hence the NPC
is equivalent to a two-photon cylindrical lens [21].

In this work we design a multistripe parabolic NPC instead
of a continuous one, as shown schematically in Fig. 1. The
stripe interval is �tr and the stripe width is �tr/2. For each
stripe, only its center follows z = −αx2. This design will bring
new characters to the two-photon lens, such as the transverse
periodicity and two lensless ghost images. The nonlinearity of
a multistripe parabolic NPC is

χ (2)(x,z)

= d33

∑
n

F (gn)eignz
∑
m

rect

(
x−m�tr

�tr/2

)
eignα(m�tr )2

. (2)

We define

U (x) =
∑
m

rect

(
x − m�tr

�tr/2

)
eignα(m�tr )2

(3)

as the transverse structure function which includes both the
amplitude and phase modulation. In this experiment we design
the third-order reciprocal vector g−3(−g3) to satisfy the quasi-
phase-matching condition kp − ks − ki − g3 = 0. The effec-
tive two-photon wave front then takes the form of e−ig3α(m�tr )2

.
For deriving an analytical solution of two photons’ spatial
correlation, we use an approximated description of U (x)

U (x) =
∑
m

rect

(
x − m�tr

�tr/2

)
e−ig3αx2

, (4)

where within each stripe the phase profile still follows
the parabolic function e−ig3αx2

instead of the constant one
e−ig3α(m�tr )2

. It is worth noting that this approximation is
reasonable since each stripe’s width �tr/2 is small and
satisfies the far-field condition of feff � (�tr/2)2/λ when
the measurement is implemented in the two-photon fo-
cal plane z = feff [23]. The Fourier expansion of U (x)
is 1

2

∑
m sin c(mπ/2)ei2πmx/�tr e−ig3αx2

in which sin c(x) =

sin(x)
x

. This form of U (x) is convenient to use in the following
calculations.

B. The imaging formula

Based on the first-order perturbation theory [24] and us-
ing the Hamiltonian HI = ε0

∫
V

d�rχ (2)(x,z){E(+)
p E(−)

s E
(−)
i } +

H.c., we obtain the two-photon state

|ψ〉 ∝ ψ0

∑
�κs ,�κi

Htr (�κs,�κi)â
(+)(�κs)â

(+)
i (�κi)|0〉, (5)

in which all the slowly varying terms and constants are
absorbed into ψ0. �κs,�κi are the transverse wave vectors
of signal and idler photons, respectively. Here we assume
the frequency mode function and spatial mode function of
the two-photon state factor and are only concerned with the
transverse part [24]. The transverse two-photon mode function
is calculated as

Htr (�κs,�κi) =
∫

d �ρ{U ( �ρ)E( �ρ)}e−i(�κs+�κi )· �ρ, (6)

in which E( �ρ) is the pump beam’s profile and U ( �ρ) represents
the two-dimensional structure function of the NPC. Since
the state-of-the-art crystal poling technique only enables
two-dimensional domain engineering, the domain modulation
along the y axis is homogenous. For the plane-wave pump, the
mode function along the y axis is given by Htr (κsy,κiy) =∫

dy e−i(κsy+κiy )·y ∝ δ(κsy + κiy), while the mode function
along the x axis is Htr (κsx,κix) = ∫

dxU (x) e−i(κsx+κix )·x ∝∑
m sin c(mπ

2 )
∫

dκ δ(κsx + κix − κ − 2πm
�tr

)ei κ2

4g3α . In the fol-
lowing part, we will only be concerned with the spatial
correlation along the x axis.

Suppose signal and idler photons are captured by detector
D1 and D2, respectively. E

(+)
j (�rj ,tj ) is the electromagnetic

field evaluated at the two detectors’ spatial coordinate
�rj ( �ρj ,zj ) (j = s,i). zs and zi stand for the distance from
the crystal to the object and the imaging plane, respec-
tively. The propagation of the two free-space electromag-
netic fields is E

(+)
j (�rj ,tj ) = ∑

�kj
Ej e

−iωj tj g(�κj ,ωj ; �ρj ,zj )â�kj
,

in which Green’s function takes the form of g(�κj ,ωj ; �ρj ,zj ) =
e
ikj zj

iλj zj

∫
d �ρse

i
ωj

2czi
| �ρj −�ρs |2ei�κj · �ρs [24]. Suppose the transverse

component is smaller and satisfies |�κj | � |�kj |, then we
have �kj = |�kj |êz + �κj . Two-photon amplitude A(xs,xi) =
〈0|E(+)

2 E
(+)
1 |ψ〉 is calculated to be

A(xs,xi) ∝
∫

dxE(x)
∑
m

sin c(mπ/2)ei2πmx/�tr

× e
i

(
ωs

2czs
+ ωi

2czi
−g3α

)
x2

e
−i

(
ωs xs
czs

+ ωi xi
czi

)
x
. (7)

When taking the pump to be transversely infinite, we obtain
a point-to-point correspondence along the x axis between the
signal and idler photon

G(2)(xs,xi) = |A(xs,xi)|2 ∝
∣∣∣∣∣
∑
m

sin c

(
mπ

2

)

× δ

(
ωsxs

czs

+ ωixi

czi

− 2πm

�tr

)∣∣∣∣∣
2

, (8)
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under the condition of ωs

2czs
+ ωi

2czi
− g3α = 0. Thus the imag-

ing formula is obtained and it can be written as

1

λszs

+ 1

λizi

= 1

λpfeff
, (9)

in which feff equals π
g3αλp

. So feff is relevant to the pump
wavelength, the curvature of the parabolic NPC, and the
reciprocal vector for the longitudinal quasi-phase-matching
condition. The two-photon wave front takes another form of
ϕ(x) = e−ig3αx2 = e−ikpx2/2feff . If one uses a point detector
to scan and detect two-photon probability after the crystal,
two-photon focusing as well as the far-field diffraction of
the multistripe will be observed at the plane z = feff [22],
thus multiple focal spots may be observed. When one puts
an object in one of the paths, the image will be recovered
in the other path by coincidence measurement. The image is
linearly magnified by a factor of − λizi

λszs
when the object is put

into the signal path. For degenerate photon pair generation,
the imaging formula will be simplified to 1

zs
+ 1

zi
= 2

feff
. If

we set zs = zi = feff , an equal-size reproduction of the object
will be retrieved. According to Eq. (8), there should be many
equally spaced ghost images and the intensity of high-order
images are decided by the sin c function. However, the number
of observable ghost images should be further limited by the
single-photon distribution.

Consider a pump with a Gaussian spatial profile with beam
waist w0, the spatial correspondence of photon pair will take
the form

G(2)(xs,xi) ∝
∣∣∣∣∣
∑
m

sin c

(
mπ

2

)
e
−π2

(
xs

λs zs
+ xi

λi zi
− m

�tr

)2
w2

0

∣∣∣∣∣
2

. (10)

For a zero-order ghost image, i.e., m = 0, the imaging
resolution is λizi/w0π when the object is put in the signal path.

III. EXPERIMENTAL RESULTS OF LENSLESS
GHOST IMAGING

A. Single lensless ghost image

In this experiment we engineer the multistripe ferroelectric
domains in LiTaO3 as Fig. 2(a) shows. The longitudinal
periodicity of NPC is � = 13.917 μm, which ensures efficient
entangled photon generation with the third-order reciprocal
vector g3 = 3(2π )/�. The transverse domain modulation
follows z = −αx2 and α = 15.226 m−1. It indicates that
feff = 33.3 mm when the crystal is pumped by 457 nm. The
stripe interval �tr is 20 μm, stripe width b is 10 μm, and
stripe length L is 6 mm. The crystal is pumped with a cw
single longitudinal mode 457-nm laser and embedded in an
oven for temperature control to produce the degenerate photon
pairs at 914 nm. M1 reflects the pump and keeps the entangled
photons transmitted. M2 is a beamsplitter. A bucket detector
D1 is put in the signal path and collects all the photons after the
object which is a double slit aperture with slit width 150 μm
and slit separation 300 μm. For the transmitted path, the fiber
tip scans along the direction of x axis and it is followed by
another single-photon detector D2. Two bandpass filters IF1

and IF2 with 10-nm FWHM are put before two single-photon

FIG. 2. (Color online) Photograph of NPC sample (a) and
experimental setup (b). The bucket detector D1 consists of two
collection lenses and a single-photon detector. It collects all the
photons after the double slit.

detectors to further suppress the pump. No additional imaging
lens is required in this imaging setup.

When the working temperature of the NPC is set at 180.1◦C
and the pump is incident along its center, degenerate entangled
photon pairs are generated collinearly; the two-dimensional
single-photon counting profile at D2 is presented in Fig. 3(a).
When making coincidence counting between two detectors, a
clear image of the double slit appears as in Fig. 3(b). When
we set the object distance zs = 33.3 mm, the ghost image
plane is found to be located at around zi = 32.4 mm. The
measured separation of the double slit is 303 μm, and a
Gaussian fitting of the peaks gives slit widths (FWHM) of 146
and 142 μm, respectively. Hence a nearly equal-size image is
obtained. When the scanning fiber tip locates out-of-focus, the
image gets blurred. A preliminary test for the spatial resolution
gives 33 μm (FWHM) by using the single-mode fiber tip
as the object, while the theoretical value is 28 μm with a
full pump width of 0.82 mm. Since no additional imaging
lens is used in this experiment, the imaging resolution is
determined only by the pump size and wavelength of the
entangled photons. As we have calculated, the photon pair
emerges from the same point of crystal and each photon
pair takes all the possible combinations of momentum with
a certain phase distribution which results from the transverse
parabolic modulation. This lensless ghost imaging can be
explained through analogies to geometric optics. Figure 3(c)
is an unfolded layout of the lensless imaging. The geometric
ray in Fig. 3(c) actually represents the two-photon amplitude.
The superposition of these two-photon amplitudes builds up
a nonlocal point-to-point correspondence between the signal
and idler path. The parabolic NPC works equivalently as
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FIG. 3. (Color online) (a) Single-photon profile at D2. (b) Single-
photon counting distribution is denoted by the upper blue symbols
and the coincidence counting by the lower red symbols. The bucket
detector D1 gives the photon counting rate 0.25 Mc/s and the
maximum coincidence counting rate is 330 c/s. (c) The unfolded
layout of lensless ghost imaging.

the imaging lens. The spatial resolution of such lensless
imaging is the same as the ghost imaging implemented with a
homogeneous bulk nonlinear optical crystal and a cylindrical
lens with a large enough aperture under the same experiment
configuration including the wavelength of entangled photons,
the crystal size, and the image distance. Here, we have to
emphasize that higher order ghost images are not observed
since the spatial interval of two adjacent ghost images is
beyond the single-photon distribution as shown in Fig. 3(a).

B. Double lensless ghost images

As first considered in Ref. [21], the alignment of the multi-
ple stripes transforms the two-photon spatial entanglement and
brings new characters. Here for the multistripe parabolic NPC
sample described by Eq. (3), we find the structure function
U (x) reproduces itself after a translation of d = λpfeff

�tr
which

indicates our crystal structure has a translational periodicity:

U

(
x − λpfeff

�tr

)

=
∑
m

rect

(
x − λpfeff/�tr − m�tr

�tr/2

)
e−ig3α(m�tr )2

=
∑
m

rect

(
x − m′�tr

�tr/2

)
e−ig3α(m′�tr )2 = U (x), (11)

where we have used relations g3α = π
λpfeff

, λpfeff

�tr
=

38.08�tr ≈ 38�tr , and m′ = m + λpfeff

�2
tr

≈ m + 38. Therefore
when the crystal is translated by a distance of jλpfeff/�tr (j
= 0, ± 1, ± 2, . . .), both the image positions and the image
intensity remain the same. The crystal works as a two-photon
lens which has multiple equally spaced principal axes on it. All

FIG. 4. (Color online) (a) Theoretical Fourier spectra of NPC
when the pump is incident on different positions of NPC. (b) The
corresponding QPM geometry for two single-photon cones. Each
cone is quasi-phase-matched by a tilted reciprocal vector �g3L or �g3R

and the cone axis is along �kp − �g3L or �kp − �g3R . (c) The measured
single-photon distribution.

these principal axes are equivalent so that when the incident
pump lies halfway between two principal axes, the two images
near the center will have equivalent intensities.

Experimentally we found that the single-photon distribution
and ghost imaging can be recovered when the crystal shifts by
multiples of λpfeff/�tr (0.76 mm), which consists well with
the above theoretical calculation. This transverse periodicity
can also be understood from the viewpoint of reciprocal space
of such NPCs. Figure 4(a) is the theoretical simulation about
the reciprocal space of the crystal by Fourier transformation
when the pump is incident on different positions of the crystal.
The reciprocal space is distorted when the pump moves away
from the central position and it will recover when the pump
moves 0.76 mm away. When the pump is incident in between,
i.e., x = 0.38 mm, from the reciprocal space we can see
that two noncollinear reciprocal vectors �g3L and �g3R with
mirror symmetry exist, which may work for new types of
entangled photon generation under �ks + �ki + �g3L(3R) = �kp.
For a two-dimensional NPC without parabolic modulation,
the classical parametric down-conversion process participant
by such a pair of reciprocal vectors has been reported [25,26].
For the spontaneous parametric down-conversion in this
parabolic NPC sample, the QPM geometry is similar. The
only difference is that the photon pair carries a parabolic phase
profile. Figure 4(b) shows two concurrent noncollinear QPM
geometries which result in two tangent single-photon cones.
If one takes the advantage of concurrent QPMs in the NPC
sample, multiple images can be obtained.

In the experiment, when the crystal moves 0.38 mm away
from the center and the temperature is tuned to 178.5 ◦C, two
tangent single-photon rings are captured, as shown in Fig. 4(c).
So when the signal photon travels along the pump direction, the
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FIG. 5. (Color online) (a) Two ghost images of double slit whose
size is close to that of the object mask. (b) The schematic layout for
simultaneous construction of two ghost images. The single photon
detector D1 in the object path is a bucket detector whose combination
is similar to that in Fig. 2(b). Single-photon detectors D2 and D3 are
spatially resolving.

idler will emerge from either ring indistinguishably. If we put
the object into the overlap region of the two rings, two ghost
images will be expected at the outer sides of two single-photon
rings. Figure 5(a) shows the experimental results under
the same experimental configuration as in Fig. 2(b). Two
equal-size images of double slit are obtained in the transmitted
path when the fiber tip is scanning in the in-focus plane. The
experimental setup can be further simplified into Fig. 5(b).
No beamsplitter is required since the photon pair is naturally
separated. Such concurrent ghost images may also be realized
by the homogenous bulk nonlinear crystal; however, additional
optical elements including a lens and beamsplitter are required.

IV. DISCUSSIONS

Since quasi-phase-matching generation of entangled pho-
tons enriches the range of working wavelengths, with nonde-

generate photon pairs we may achieve a two-color lensless
ghost imaging. The resolving power and field of view can be
greatly enhanced [6] when the photons in the spatially resolved
path have much higher frequency. Also the wavelengths of
the photon pair can be designed according to practical use
such as the midinfrared, fiber communication wavelength, or
nondestructive wavelength for observing biological samples.
Besides, the resolution of the lensless imaging can be further
improved through increasing the pump size and engineering
a continuous parabolic NPC. But we have to emphasize
that the lensless imaging demonstrated in this work is one-
dimensional, and the two-dimensional one relies on the
fabrication of three-dimensional NPCs.

V. CONCLUSIONS

The lensless quantum imaging demonstrated in this work
is performed by the momentum correlation manipulation
of the entangled two-photon pair by engineering nonlinear
photonic crystals. The engineering of spatial entanglement
helps us explore fundamental concerns in quantum mechanics
and practical quantum technologies such as the lensless
quantum imaging described in this work. The lensless imaging
offers a principle for engineering equivalent lenses during the
nonlinear interaction and opens a door for lensless imaging
at specific regions of the electromagnetic spectrum like
x-rays [27], terahertz, infrared, microwave radiation, as well as
acoustic wave. Preparing other new types of entangled states
with tailored mode functions and the extension to entangled
bright beams from high-gain parametric down-conversion
deserves further investigation.
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