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Generation of frequency-correlated narrowband biphotons from four-wave mixing in cold atoms
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Generation of frequency-correlated narrowband biphotons from the four-wave mixing process is theoretically
analyzed through manipulating optical properties of light propagation inside a cold atomic ensemble. In
contrast with the spontaneous parametric down-conversion case, we find a much looser condition, which allows
producing such frequency-correlated paired photons. We propose a two-photon temporal conditional correlation
measurement to detect these photons. In addition, our results provide other evidence for observing backward
pulse propagation from the viewpoint of two-photon correlation measurement.
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I. INTRODUCTION

The field of quantum optics has witnessed significant
developments in recent years, from the laboratory realization
of counterintuitive concepts, such as quantum entanglement
and Schrödinger cat states, to the investigation of novel
technologies, such as quantum-information processing, quan-
tum communication, quantum cryptography, and quantum
imaging. To advance the progress in these fields, it is a primary
task to have a good light source, which can emit entangled
photons with some desirable joint wave forms. Conventionally,
entangled photon pairs are produced from the process of
spontaneous parametric down- conversion (SPDC) [1] in a
nonlinear crystal in which an input pump photon is annihilated
while two daughter photons are simultaneously created.
Because of the energy conservation, these SPDC photons are
usually frequency anticorrelated by assuming the input pump
beam is a plane wave. For example, in the degenerate case,
if the central frequency of one down-converted SPDC photon
is tuned to a higher frequency, the central frequency of its
twin photon must be shifted to a lower frequency. Because
of their short coherence time, shaping the joint spectrum is
implemented through spatial modulation of the nonlinear inter-
action [2–4], employing a pulsed pump laser [5], or modifying
the phase-matching conditions [6]. With the extended-phase-
matching conditions, the frequency-correlated entangled pho-
tons, especially the coincident-frequency photons [7], have
been put forward. In contrast with frequency-anticorrelated
paired photons, detecting one of these frequency-correlated
photons with blue detuning from the central frequency
implies that its twin is also blue detuned from the cen-
tral frequency. Generating frequency-correlated biphotons
with a few femtoseconds of correlation time is particularly
useful for quantum metrology and timing and positioning
measurements [8].

Recent demonstrations for generating entangled photon
pairs from four-wave mixing (FWM) in cold atoms [9–13]
exhibit a number of interesting properties, such as long coher-
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ence time, long coherence length, high conversion efficiency,
and high spectral brightness. More importantly, these photons
are more suitable for long-distance quantum communication
and quantum-information processing based on the interface of
coherent interaction between atoms and photons than SPDC
photons. Such a source also offers a flexible way to shape
the two-photon wave form directly in the time domain. For
instance, by encoding the information into the input beam
profiles, it can be revealed in the two-photon coincidence mea-
surements as theoretically proposed in Ref. [14] and experi-
mentally demonstrated in Ref. [15]. Another example [16] is to
engineer a biphoton spectrum through an electromagnetically
induced grating [17], in which the directionality and spectral
brightness of entangled paired photons can be enhanced
further.

Despite this rapid progress, there is no report on generating
frequency-correlated narrowband biphotons through FWM
in a cold atomic system. We, therefore, wish to perform
such a theoretical analysis here and show the feasibility of
producing these photons in the current laboratory. We notice
that frequency-correlated paired photons can, in principle,
be created through FWM in a nonlinear optical fiber [18].
However, no experimental illustration has been reported
to date, partly due to the difficulty of achieving the so-
called extended-phase-matching conditions [7]. Frequency-
correlated entangled photon pairs have been demonstrated
with the use of a type-II periodically poled KTiOPO4 [6], but
the experiment severely depends on such a specially designed
nonlinear crystal that its dispersive properties can satisfy the
extended-phase matching. In contrast, biphoton generation
from cold atoms via FWM offers much flexibility. That is,
the dispersive properties of the system are tunable in a large
range by manipulating experimental parameters. In our results,
one noticeable difference from previous research [7] is that
the extended-phase-matching condition is greatly loosened.
This allows one to obtain frequency-correlated photons with
less constraints. To detect these photons, we propose a
two-photon temporal correlation measurement conditioned on
the trigger of the input probe pulse. Moreover, our results
also suggest other evidence for observing backward pulse
propagation from the viewpoint of the two-photon correlation
measurement.

We organize our paper as follows. To be specific, we take
a four-level double-� cold atomic system to illustrate the
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FIG. 1. (Color online) (a) Atomic level structure for generating
frequency-correlated Stokes-anti-Stokes photons. (b) Simplified ex-
perimental setup. By applying the probe and control fields in the
counterpropagation configuration, paired Stokes-anti-Stokes photons
simultaneously are produced and detected by two single-photon
detectors, D1 and D2, in the backward geometry.

basic idea. In Sec. II, we look at the dispersive properties
of the ensemble for the corresponding electromagnetic fields.
In Sec. III, the two-photon state is calculated in first-order
perturbation theory. We give a more general condition, which
allows generating the frequency-correlated paired photons.
In Sec. IV, we consider the two-photon temporal correlation
in coincidence-counting measurements. Finally, we give our
concluding remarks.

II. DISPERSIVE PROPERTIES OF THE ATOMIC SYSTEM

For simplicity, we consider a four-level double-� system,
which consists of identical atoms with length L and the
average atomic density N . Initially, all the population is
distributed in their ground state |1〉, as shown in Fig. 1(a).
Paired Stokes and anti-Stokes photons are generated backward
as applying one weak probe and one strong control beam in the
counterpropagation geometry, as depicted in Fig. 1(b). Here,
the weak probe field is assumed to be a pulsed laser, which is
off-resonant with atomic transition |1〉 → |4〉; while the strong
control light is a cw laser, which is on-resonance with transition
|2〉 → |3〉. We denote the angular frequency of each field as
ωj and the wave number as kj (j = s,as,p,c). As shown in
Fig. 1(b), paired Stokes and anti-Stokes photons are produced
and are detected by two single-photon detectors, D1 and D2, in
the backward-propagation configuration. Since the atoms are
laser cooled and trapped, the Doppler broadening is negligible
and will not be taken into account.

To look at the generation of frequency-correlated paired
photons, it is instructive to start with the optical response of
the medium for the fields, which are involved in the interaction.
Following the analysis presented in Ref. [19], the third-order
nonlinear susceptibility for the generated anti-Stokes field
takes the form

χ (3)
as = Nh̄d24d13d41d32

ε0

1

(�∗
21�

∗
as − |�c|2)�∗

p

, (1)

and the linear susceptibilities for the pump, Stokes, and anti-
Stokes fields are, respectively,

χp = Nh̄|d41|2
ε0

1

�p

,

χs = Nh̄|d24|2
ε0

|�p|2�as

(�21�as − |�c|2)�∗
s �p

, (2)

χas = Nh̄|d13|2
ε0

�∗
21

�∗
21�

∗
as − |�c|2 .

Here, the complex detunings are defined as �p = ω41 −
ωp + iγ41, �s = ω42 − ωs + iγ42, �as = ω31 − ωas + iγ31,
and �21 = ω21 − ωp + ωs + iγ21, where ωij (i,j = 1,2,3,4)
is the atomic transition frequency between levels |i〉 and |j 〉,
dij = e〈i|r|j〉

h̄
stands for the dipole matrix element divided by

h̄, and γij represents the decay or dephasing rate. �p(c) is the
probe or control Rabi frequency. The physics behind χ (3)

as has
been addressed in Ref. [11], which will not be repeated here.
In fact, for generating frequency-correlated paired photons,
the linear optical responses described by Eq. (2) play an
indispensable role in the process. Hence, in the following,
we will focus on these linear susceptibilities.

It is well known that the real part of the linear susceptibility
determines the dispersion of the material, while the imaginary
part controls the transmission and absorption. From Eq. (2),
it is not difficult to find the group velocities of the probe and
anti-Stokes fields, respectively, within the ensemble,

up ≈ − 2ε0cγ
2
41

Nh̄|d41|2ω41
, (3)

uas ≈ 2ε0c|�c|2
Nh̄|d31|2ω31

. (4)

In contrast, the Stokes and control fields propagate inside
the atoms at almost the speed of light in vacuum, c. It is
clear from Eq. (3) that the probe field traverses the medium
with a negative (or superluminal) group velocity because of
a small amount of population inversion and reshaping of the
profile [20]. We notice that such an exotic propagation effect,
backward pulse propagation, has been previously observed in
the experiment [21]. Our results obtained here, thus, provide
other evidence for observing such an effect from the viewpoint
of the two-photon correlation measurement. Instead, the anti-
Stokes field passes through the system with a slow group
velocity due to the slow-light effect of electromagnetically
induced transparency [22]. To get a feeling of the magnitude
of these quantities, let us take the 87Rb D2 line [23] as an
example. If N ∼ 1012 atoms/cm3 and �c ∼ 2 × 107 Hz, one
then has up ∼ −2000 m/s and uas ∼ 240 m/s.

III. TWO-PHOTON STATE

To describe the state of paired Stokes-anti-Stokes photons,
we work in the interaction picture. The effective Hamiltonian
is given by

HI = ε0

∫ 0

−L

dz χ (3)
as Ê(+)

p Ê(+)
c Ê(−)

s Ê(−)
as + H.c., (5)

where H.c. means the Hermitian conjugate. As usual, the weak
pulsed probe and strong cw control beams are taken as classical
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electric fields, while the new fields, Stokes and anti-Stokes, are
treated quantum mechanically. That is,

Ep =
∫

dνp Ẽp(νp)ei(kpz−νpt)e−i
pt ,

Ec = Ece
−i(kcz+ωct),

Ê(+)
s =

∑
ks

εs âse
i(ksz−ωs t), (6)

Ê(+)
as =

∑
kas

εas âase
−i(kasz+ωas t),

where 
p is the central frequency of the probe field, Ẽp(νp) is

its spectral profile, and εj = i
√

h̄ωj/2ε0n
2
jVq (j = s,as) with

the refraction index nj and quantization volume Vq .
With the use of Eqs. (5) and (6), the two-photon state can

then be evaluated from first-order perturbation theory [24],
which gives [11,19]

|�〉 = A

∫
dωs

∫
dωas

∫
dνp Ẽ(νp)χ (3)

as �(kL)

× δ(
p + νp + ωc − ωs − ωas)â
†(ωs)â

†(ωas)|0〉,
(7)

where all the slowly varying terms and constants are absorbed
into A and the summations have been converted into the
angular frequencies. In Eq. (7), �(x) = sinc ( x

2 )e−i(x/2) is
the joint natural spectrum function of the photons, which
carries the information of the phase mismatching k in the
longitudinal direction over the whole interaction length. The
Dirac δ function implies that the energy conservation is well
satisfied in the FWM process. One may notice that, different
from previous research [11,19], Eq. (7) involves one more
integration over the spectrum of the probe field. Although the
δ function allows the elimination of one integral, two integrals
still survive in Eq. (7), which may result in the deduction of
the degree of entanglement between two particles [5]. In fact,
a maximally entangled state is still available if one forces the
joint spectrum function � to approach a Dirac δ function,
as first noted by Giovannetti and his co-workers [7]. This
observation leads to the generation of frequency-correlated
biphotons. Before proceeding with the discussion, we notice
that, as previously addressed in Refs. [9,11–13], the efficiency
of generating these photons can be made usually higher than
that of SPDC [6]. Of course, here, the efficiency depends on
the system parameters, such as the input beams power, the
atomic density, and the detunings.

Following the treatment done in Ref. [7], we look at the joint
natural spectrum function � first. In the counterpropagating
geometry, the wave-number mismatch k in the first-order
Taylor expansion with respect to their central frequencies 
j

can be recast into the following form:

k =
(

1

up

+ 1

uas

)
(ωas − 
as) −

(
1

c
− 1

up

)
(ωs − 
s)

=
(

1

c
− 1

up

)
[β(ωas − 
as) − (ωs − 
s)], (8)

where the group velocity of the Stokes field is simply taken as
c. In Eq. (8), we have introduced a factor,

β =
1

uas
+ 1

up

1
c

− 1
up

� −1 − up

uas

, (9)

which is a merit of figure of frequency-correlated biphotons.
The relation limL→∞ sin (xL)/x = πδ(x) allows us to reex-
press the joint natural spectrum function � as

lim
L→∞

�(kL) = 2π

L
δ(k)e−i(kL/2). (10)

By substituting Eq. (10) into Eq. (7) and by completing the
integrations, this leads to the following two-photon state:

|�〉 = A

∫
dω Ẽp[ω(1 + β)]χ (3)

as (ω)â†
s (βω + 
s)â

†
as

× (ω + 
as)|0〉. (11)

Again, all the slowly varying terms and constants are grouped
into A. From Eq. (11), it is obvious that the total spectrum
function of the state is a convolution of the probe spec-
tral profile Ẽp(ω) and the third-order nonlinear coefficient
χ (3)

as (ω). Moreover, different from the results obtained for
the frequency-anticorrelated case [11,19], here, the natural
spectrum function cannot be used to further shape the biphoton
state. Furthermore, the state (11) is a maximally entangled-
photon state and cannot be factorizable.

Before proceeding to Sec. IV, let us add a few discussions
about the parameter β. From Eq. (9), we are ready to find that
tas − tp = β(ts + tp), where tj is the time for the ωj field to
traverse the atomic ensemble. For simplicity, we look at the
case of β = 1. In such a case, tas − tp = ts + tp implies
that, although the Stokes and anti-Stokes photons propagate
backward, they are always symmetrically located on each
side in reference to the peak of the probe profile (i.e., the
regenerated backward-propagating probe pulse) within the
atomic gas, as pictorially illustrated in Fig. 2. It is clear
that, when β = 1, it gives the perfect frequency-correlated
photons, which are distributed symmetrically around the
center of the backward-propagation probe pulse, similar to
the case studied in Ref. [7]. In fact, if β 	= 1, this still gives
frequency-correlated biphotons except that the two photons are
located unsymmetrically around the center of the regenerated
backward-propagating probe profile. For frequency-correlated
entangled photons, the condition of |up| > uas should be
satisfied as indicated from Eq. (9). Here, this implies that |�c|

FIG. 2. (Color online) Pictorial illustration of the propagation of
frequency-correlated Stokes-anti-Stokes photons relative to the probe
photon for β = 1. Z is the propagation distance inside the atomic gas.
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will be less than γ41 [i.e., operating in the (ultra-)slow light
limit]. The condition β > 0 greatly loosens the requirement
for producing frequency-correlated photons as emphasized
in the literature. Here, we note that, for the copropagation
case, it is impossible to satisfy the extended-phase-matching
condition, since β = ( 1

up
− 1

uas
)/( 1

c
− 1

up
) < 0, and, hence, no

frequency-correlated photons are observable.

IV. COINCIDENCE-COUNTING EXPERIMENT

To study the optical properties of frequency-correlated
Stokes and anti-Stokes photons, we examine a simple two-
photon temporal correlation experiment as schematically
depicted in Fig. 1(b). First, we begin with the single-photon
counting measurement, say, detecting anti-Stokes photons.
The first-order correlation function is given by

G(1) = 〈�|Ê(−)
as (τ2)Ê(+)

as (τ2)|�〉
=

∑
k′

|〈0|ak′Ê(+)
as (τ2)|�〉|2, (12)

where Ê(+)
as refers to the positive-frequency component of the

free-space electromagnetic field triggered at detector D2. In
Eq. (12), τ2 = t2 − z2

c
, where z2denotes the distance from

the output surface of the ensemble to the plane of D2 and
t2 represents the trigger time. With the use of Eq. (11), one can
show that

G(1) = B1

∫
d ω

∣∣χ (3)
as (ω)Ẽp[ω(1 + β)]

∣∣2
, (13)

where B1 is a constant. It is clear that the singles counting rate
gives a featureless constant, as expected.

Now let us turn to the two-photon coincidence-counting
measurement in the low optical-depth regime. For simplicity,
we assume that there is no filter placed before detectors D1

and D2. With the help of Eqs. (1) and (11), we are ready
to show

G(2)(τ1,τ2) = |〈0|Ê(+)
2 (τ2)Ê(+)

1 (τ1)|�〉|2

= B2

∣∣∣∣
∫

dω
Ẽp[ω(1 + β)]e−iω(βτ1+τ2)

(ω + �e + iγe)(ω − �e + iγe)

∣∣∣∣
2

.

(14)

Here, B2 is a grouped constant, and τ1 = t1 − z1
c

, where z1

is the distance from the output surface of the gas to D1

and t1 is its trigger time. In Eq. (14), we rewrite χ (3)
as (ω)

around its two resonances as done in Ref. [11]. �e is the
effective Rabi frequency, and γe is the effective dephasing
rate. Equation (14) is another important result obtained in this
paper. Mathematically, it is a Fourier transform. If the spectrum
function of the probe field is given, one can immediately obtain
the knowledge of the two-photon temporal correlation. For
example, if the input probe field takes a Gaussian profile with
bandwidth σ , Ẽp(νp) = e−ν2

p/σ 2
, after some algebra, Eq. (14)

becomes

G(2)(τ1,τ2) = B2e
−2γe(βτ1+τ2){1 − cos [2�e(βτ1 + τ2) − α]},

(15)

with a constant phase α = 4�eγe(1 + β)2/σ 2. Again, all the
slowly varying terms and constants are absorbed into B2.

FIG. 3. (Color online) Two-photon coincidence measurement
conditioned on the trigger of the input probe pulse.

By changing the Rabi frequency of the control field and the
bandwidth of the probe pulse, the range of α is not limited
in (0,2π ] and can be even greater than 2π . Equation (15)
shows that G(2) exhibits damped Rabi oscillations with the
period π/�e and the damping rate 2γe due to the two-photon
interference between two FWM processes, as reported in
Refs. [9,11]. Here, however, the constant phase α distinguishes
the current case from previous studies. That is, the two-photon
antibunchinglike effect can be switched to the bunchinglike
effect by tuning α. Alternatively, the observation of the
shifting of the minimum toward τj > 0 gives a signature of
the detection of frequency-correlated paired photons. Since
these narrowband photons have bandwidths typically from
megahertz to hundreds of megahertz, the current state-of-the-
art single-photon detectors with tens of picosecond timing
resolutions are fast enough to resolve each pair directly in
the time domain. Therefore, the coincidence-counting rate is
simply proportional to G(2). One may notice that two timings
appear in Eq. (15). In the experiment, how can one implement
the measurement? In fact, one timing can be removed from
Eq. (15) by using part of the input probe pulse as a trigger to
initiate the coincidence circuit, as shown in Fig. 3. In Fig. 4, we
plot two curves of the conditional G(2)(τ2,τ1 = 0) by setting
(�e = 1.2γe, α = π/2) (dashed line) and (�e = 1.2γe, α =
2π ) (solid line), respectively. For the atomic gas with high
optical depth, the situation is closer to the SPDC case [7],
which will not be addressed here.
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FIG. 4. (Color online) Second-order temporal conditional corre-
lation function G(2) as a function of τ2.
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V. CONCLUSION

To summarize, we have theoretically studied the genera-
tion of frequency-correlated narrowband Stokes-anti-Stokes
photons through FWM in a cold atomic system, especially in
the low optical-depth region. For simplicity, we take the input
probe field as a pulsed laser, while we take the control light
as a cw beam. We have extended the condition, which allows
us to yield the frequency-correlated paired photons. For the
experiment, we proposed performing a two-photon temporal
correlation measurement conditioned on the trigger of the
probe pulse. Our results show that, by changing the constant
phase α, the damped Rabi oscillations can be tuned from the
two-photon antibunchinglike effect to the bunchinglike effect.
Alternatively, this also provides a signature for the observation
of frequency-correlated photons in the experiment. In addition,

our results suggest other evidence for observing backward
pulse propagation from the viewpoint of the two-photon
correlation measurement. This research could be useful for
fields, such as quantum-information science and quantum
metrology.
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