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Broadband continuous-variable entanglement source using a chirped poling nonlinear crystal
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Aperiodically poled nonlinear crystal can be used as a broadband continuous-variable entanglement source
and has strong stability under perturbations. We study the conversion dynamics of the sum-frequency generation
and the quantum correlation of the two pump fields in a chirped-structure nonlinear crystal using the quantum
stochastic method. The results show that there exists a frequency window for the pumps where two optical fields
can perform efficient upconversion. The two pump fields are demonstrated to be entangled in the window and
the chirped-structure crystal can be used as a continuous-variable entanglement source with a broad response
bandwidth.
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I. INTRODUCTION

Quantum entanglement plays an indispensable role in quan-
tum information and quantum communication [1] nowadays.
Therefore, the preparation of quantum entanglement states is
a basic work of quantum information science. Continuous-
variable (CV) entanglement has attracted much attention due
to its efficiency in quantum information and application in
universal quantum computation [2]. CV entanglement was
also used to demonstrate the Einstein-Podolsky-Rosen (EPR)
paradox [3–6]. Recently, the quasiphase-matching (QPM)
technique was introduced into the entanglement source and
attracted great attention due to its high conversion efficiency
and also its flexibility on modulating phase-matching wave-
length [7–11]. In the QPM device, nonlinear optical processes
can be controlled by the proper design of the modulation
structure of nonlinearity. For example, chirped structure can be
used to broaden the bandwidth of sum-frequency generation
(SFG) [12] and generate broadband entangled photons through
the spontaneous parametric down conversion (SPDC) process
[13,14].

In this work we propose a scheme to generate broadband CV
entanglement from the chirped poling nonlinear crystal. We
will discuss the sum-frequency dynamics and then analyze the
correlation property of two pump fields with lower frequencies
using the quantum stochastic method [15]. The results show
that there exists a response window where the pump fields with
frequencies in a certain range can perform efficient upconver-
sion. Within this window, the two fields of lower frequency are
entangled. Therefore, the chirped-structure nonlinear crystal
can be used as a broadband CV entanglement generator. A
CV entanglement source with a broad response bandwidth
has practical advantages. It can not only improve adaptability
and flexibility of the source in practical use, but also improve
the stability of the source under external turbulences. External
perturbations such as temperature instability can result in phase
mismatch and may greatly reduce the conversion efficiency.
The chirped crystal can overcome this problem due to its large
response bandwidth.
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II. THEORETICAL MODEL AND METHOD

Sum-frequency generation couples three electromagnetic
fields in a nonlinear crystal with the second-order susceptibility
χ (2). For the chirped poling crystal shown in Fig. 1, the
ferroelectric domains of the crystal are regularly reversed to
provide a chirped spatial frequency represented by 2π/�(z),
where �(z) is the reversion period. We can take the spatial
frequency form of the crystal as K0 − αz, where K0 is the
initial spatial frequency determined by the structure at the left
end of the crystal and α is the chirp degree that represents the
degree of the linear chirp. The functional form of the spatially
varying nonlinearity is exp(i

∫ z

0 αzdz) = exp(iαz2/2) [13].
To examine the interaction property along the crystal, we

study the sum-frequency generation process in the traveling-
wave regime. Two pump beams with frequencies ω1 and ω2

enter the chirped-structure crystal from the left end at z = 0
and three optical fields with frequencies ω1, ω2, and ω3 (ω3 =
ω1 + ω2) exit the crystal at z = L. We follow the approach of
Huntter et al., [16] by quantizing the three interacting fields
in terms of the photon fluxes rather than the energy densities.
As we know, in quantum field theory, the generator for time
evolution is the Hamiltonian operator and the generator for
space propagation is the momentum operator. We can write
the nonlinear momentum operator, after including the effect
of chirped structure, as follows

Gnl(z) = ih̄κ[b̂(ω1, z)b̂(ω2, z)b̂†(ω3, z)Q(�k, z)

− b̂†(ω1, z)b̂†(ω2, z)b̂(ω3, z)Q∗(�k, z)]. (1)

Here b̂†(ωm, z) and b̂(ωm, z) are the creation and anni-
hilation operators creating or annihilating one photon of
frequency ωm at point z during the chosen time interval. κ

is the effective conversion coefficient. The bosonic operators
b̂†(ωm, z) and b̂(ωm, z) obey the spatial commutation relation
[b̂(z, ωm), b̂†(z′, ωn)] = δm,nδ(z′ − z). Q is associated with the
initial wave-vector mismatch of the three coupled fields and
also the chirp degree. It has the form Q = ei�k·ze−iαz2/2, where
�k = k1 + k2 + K0 − k3 is the initial wave-vector mismatch.

The equation of motion for the density matrix of the system
is governed by [17]

ih̄
∂ρ(z)

∂z
= [ρ(z),Gnl(z)]. (2)
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FIG. 1. (Color online) Sum-frequency generation in chirped
poling nonlinear crystal. ω1 and ω2 denote the frequencies of the
two pump fields and ω3 = ω1 + ω2 denotes the sum-frequency field.
The poling period �(z) is chosen so that the corresponding spatial
frequency 2π/�(z) is linearly chirped.

This equation provides a full description of the three interact-
ing fields. Theoretically, the density matrix ρ(z) implies all the
statistical properties of the system. However, it is very difficult
to find the analytical solution for this equation. Therefore,
we use the stochastic method to examine the correlation
property of the system. Following the usual procedure [18],
we transform the equation of motion of the density matrix to a
Fokker-Plank equation in the P representation [19,20]. After
the transformation, the Fokker-Plank equation reads

dP

dz
=

{
κ

[
− ∂
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β∗

2 β3Q
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P (
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β i,
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β

∗
i , z). (3)

According to the stochastic differential equation theory
[21,22], the Fokker-Plank equation is equivalent to a set of
stochastic equations in the positive-P representation. These
equations are listed as follows

dβ1

dz
= κβ+

2 β3Q
∗ +

√
κβ3Q∗/2(η1 + iη2),

dβ2

dz
= κβ+

1 β3Q
∗ +

√
κβ3Q∗/2(η1 − iη2),

dβ+
1

dz
= κβ2β

+
3 Q +

√
κβ+

3 Q/2(η3 + iη4), (4)

dβ+
2

dz
= κβ1β

+
3 Q +

√
κβ+

3 Q/2(η3 − iη4),

dβ3

dz
= −κβ1β2Q,

dβ+
3

dz
= −κβ+

1 β+
2 Q∗.

In these equations, ηi(i = 1, 2, 3, and 4) are real Gaussian noise
terms that satisfy the correlation condition 〈ηi(z)ηj (z′)〉 =
δij δ(z − z′). β and β+ are treated as independent complex
variables due to the independence of the real noise terms [23].
β+ and β∗ are equal only in the statistical sense.

We will investigate the frequency conversion dynamics
and the quantum properties of the system. The stochastic
positive-P representation is very convenient for calculating
any normally ordered operator moments. The expectation

value of the operator can be obtained by taking an average over
the product of c-numbers from a large number of trajectories

〈(b†)mbn〉 → ((β+)mβn). (5)

This relationship holds where there are no divergence problems
in the integration, as is satisfied in the system we present here.
In this case, the average photon number, which is proportional
to the intensity of the optical field, is of great interest and can
be calculated through the averaging process (β+β).

To examine the entanglement property between the two
pump fields output from the crystal, we will use the entan-
glement criteria developed by Duan et al., [24] based on
the inseparability of the density matrix. First, we introduce
two quadrature operators Xi = b̂i + b̂

†
i and Yi = −i(b̂i − b̂

†
i ),

which are similar to the dimensionless position and momentum
operators in the harmonic oscillator. For the two-mode case,
we can define two combined quadratures [25] X+ = X1 + X2

and Y− = Y1 − Y2. According to the entanglement criteria,
if the variances of the two combined quadratures satisfy the
inequality

[V (X+) + V (Y−)]/4 < 1, (6)

these two modes should be regarded as entangled modes.
The variance presented here can be obtained using
V (X) = X2 − (X)2 in the positive-P representation.

III. NUMERICAL CALCULATION AND DISCUSSION

The sum-frequency dynamics were discussed in the phase-
matching scheme previously from both quantum [25] and clas-
sical [26] approaches. The chirped structure mainly introduces
spatially modulated wave-vector mismatch among the coupled
waves. It is obvious that if the chirp degree α = 0, �k should
also be zero to satisfy the phase-matching condition. In this
case, the chirped crystal will change into a periodically poled
QPM (PPQPM) crystal and the SFG can be regarded as QPM.
In the following part, we first investigate the SFG dynamics
and the CV entanglement in PPQPM crystal. The results can
be compared with the chirped poling crystal. The intensities of
the two pump fields and the SFG fields are shown in Fig. 2(a).
As seen from the figure, they vary along the propagation
direction in the crystal. The curve is calculated by integrating
the stochastic Eq. (4) numerically and taking an average over
3 × 106 trajectories for κ = 0.01 with the initial conditions
β1(0) = β2(0) = β(0) = 1000/

√
2 and β3(0) = 0.

We can see that the two input beams with equal photon
numbers are converted into a higher frequency field. With the
increase of the interaction length, the conversion efficiency
may attain almost 100% theoretically. The correlation of the
two pump fields in the QPM condition is shown in Fig. 2(b),
which emerges from the sum-frequency generation. With the
increase of the conversion ratio, the correlation value decreases
from 1 to 0 until the backflow process occurs. Thus it indicates
that the higher the upconversion efficiency is, the stronger
the entanglement of the two pump fields can be obtained. The
results are consistent with former conclusions [25]. It should be
noted that the strongest entanglement requires unit conversion
efficiency. In this case, though the vacuum noises are perfectly
correlated, the average intensities of the pumps will become
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FIG. 2. (Color online) (a) Mean relative intensities in periodically
poled QPM crystal. The intensities are calculated by taking an average
over 3 × 106 stochastic trajectories of the positive-P equation (4). The
horizontal axis is the scaled dimensionless length ζ = κ |β(0)| z and
the vertical axis are the relative intensities with respect to N (0) =
|β(0)|2. The parameters are chosen as κ = 0.01, β1(0) = β2(0) =
β(0) = 1000/

√
2, and β3(0) = 0. (b) The correlation value according

to Duan et al., [24] in periodically poled QPM crystal. Note that the
quantities in this and the subsequent graphs are all dimensionless.

zero. Therefore, it cannot be used as a bright source at this
point.

We now turn to the general case where α is a nonzero
constant. For convenience of calculation, we use the scaled
dimensionless chirp degree parameter A = α/(κ |β(0)|)2 and
initial wave-vector mismatch �S = �k/κ |β(0)|. A typical
result for the evolution of field intensities in the crystal is
shown in Fig. 3 with A = 8 and �S = 10/

√
2. We can see

that the two pump-field intensities appear to stay unchanged
until they enter a strong interaction area called the effective
interaction length Leff . After the strong interaction, the three
fields keep almost stable intensities, respectively, except
that each exhibits small oscillations. This is not difficult to
understand from the phase-matching condition in the chirped
structure: The phase is only approximately matched within
Leff , thus before or after this area the phase mismatch inhibits
efficient sum-frequency generation.

The effective interaction length Leff will become shorter
while the chirp degree α increases [12]. This will also lead to
lower conversion efficiency under the same initial conditions.
The initial wave-vector mismatch �k at the left end of the
crystal affects the position of Leff in the crystal. With �k

increasing, the position of Leff will move toward the right end
of the crystal until it exits the output surface.

We now continue to investigate the correlation property
of the two pump fields. As shown in Fig. 4, the correlation
value stays around 1 initially and then quickly decreases
to the minimum, followed by a wave-like pigtail with its
average value slowly increasing. This is in coincidence with
the upconversion process: The strong interaction of the three
fields within the effective length leads to a quick decrease of the
correlation value; after the strong interaction, the correlation

FIG. 3. (Color online) Mean relative intensities in chirped-
structure crystal. The intensities are calculated by taking an average
over 3 × 106 stochastic trajectories with A = 8 and �S = 10/

√
2,

where A = α/(κ |β(0)|)2 and �S = �K/κ |β(0)| are the scaled
dimensionless chirp factor and the initial spatial frequency mismatch.
Leff is the effective interaction length in the crystal. Other parameters
are the same as those in Fig. 1.

value stays below 1 for some distance. The small oscillations
of the correlation value result from the small upconversion
and inverse processes after the strong interaction. The slow
increase of the average correlation value may be a consequence
of the stochastic process. Figure 4 demonstrates that it is
the effective nonlinear process that guarantees the strong
correlation. Here the two pump fields become entangled with
each other and are converted to a field of higher frequency. The
higher the conversion efficiency is the stronger the correlation
becomes. In Fig. 4 the conversion efficiency is only around
50%, so these two pump fields are not perfectly correlated. This
is in agreement with what is discussed in the PPQPM situation
where perfect correlation requires unit conversion efficiency.

FIG. 4. The correlation according to Duan et al., [24] in the
chirped structure crystal. The parameters are the same as those in
Fig. 3.

013832-3



ZHAO, SUN, YU, WANG, LENG, XIE, YIN, XU, AND ZHU PHYSICAL REVIEW A 81, 013832 (2010)

FIG. 5. (Color online) Upconversion efficiency as a function of
the initial wave-vector mismatch. The horizontal axis is the scaled
dimensionless wave-vector mismatch. The parameters are chosen as
κ = 0.01, β1(0) = β2(0) = β(0) = 1000/

√
2, β3(0) = 0, and A = 8.

The output surface is at ζ = 4.

According to the conversion property, we can predict a
broad response bandwidth of the crystal since the effective
interaction length is small compared to the entire nonlinear
crystal. The spatial frequencies located at z = 0 and z = L

will set the minimum and maximum of the input frequency.
In a practical chirped poling crystal, K0 is fixed and the initial
wave-vector mismatch �k reflects the input frequencies due
to the dispersion relation of the crystal, that is, k = ωin(ωi)/c,
where n(ωi) is the refractive index of the field with frequency
ωi . To demonstrate the frequency response property of the
chirped-structure crystal, we set the crystal length ζ = 4 and
describe the relative intensities of the three fields at the output
surface of the crystal as a function of initial wave-vector
mismatch. As shown in Fig. 5, there exists a window for
the initial wave-vector mismatch, where the upconversion
efficiency stays around 50% except for some fluctuations. The
correlation property of the two pump fields in the response
window is shown in Fig. 6. It is clear that the two pump
fields are entangled within the window. The fluctuations can be
ascribed to the small oscillation of the upconversion efficiency.
Since the conversion efficiency within the window cannot
reach 100%, these two pump fields are not perfectly correlated.
Nevertheless, these two entangled fields are of considerable
intensity and thus can be used as bright sources.

We can understand the window by reexamining the recip-
rocal vector property of the chirped structure. As we know, in
periodically poled crystals where poling periods are designed
to meet particular phase-matching conditions, the periodical
structure can only provide one or some discrete reciprocal
vectors, thus only those fields with designated frequencies
can perform efficient upconversion and the bandwidth is set
by the phase-matching bandwidth. In contrast, the chirped
structure contains a variable period of domain modulation,
thus it can provide various reciprocal vectors. It has much
more reciprocal vectors than the periodically poled crystal.
Different reciprocal vectors work for different sum-frequency
processes. It is the increase in the number of reciprocal vectors

FIG. 6. The Duan [24] correlation as a function of the initial wave-
vector mismatch. The parameters are the same as those in Fig. 5.

that makes possible the upconversion of a wide range of
frequencies. Therefore, the chirped crystal can respond to a
wide range of frequencies with considerable efficiency. In
other words, if the input fields contain a bandwidth equivalent
to this frequency window, the upconversion will take place
with almost the same efficiency within the window. In this
sense, the CV entanglement is broadband.

The conversion window also provides another advantage
of the chirped structure. It can improve the stability of
the entanglement source under external perturbations such
as temperature fluctuation and mechanical vibration. For
example, temperature fluctuations can affect the refractive
index of the crystal, which introduces wave-vector mismatch.
This is equivalent to the frequency change of input fields.
The mechanical vibration may also lead to the divergence of
the incident angle, which may then result in phase mismatch.
Fortunately, the chirped crystal contains a broad response
window for the input fields and therefore can compensate for
the mismatch. In this sense, the chirped structure also renders
the entanglement source more robust and stable.

IV. CONCLUSION

We use the stochastic method to study the dynamics of the
nonlinear sum-frequency process in a chirped QPM crystal.
The correlation property of the two pump fields are in-
vestigated in detail. Our results show that there exists a wide
frequency response window in the chirped structure where
the pump fields can perform an efficient upconversion. The
pump fields are well entangled in the window due to nonlinear
interaction. In other words, the chirped-poled QPM crystal can
be used as a CV entanglement source with a broad response
bandwidth. The chirped structure can also be used to improve
the stability under external disturbances.
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